Learn More
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-chromosome-linked recessive lysosomal storage disorder that results from a deficiency of iduronate-2-sulphatase (12S). Patients with MPS II store and excrete large amounts of partially degraded heparan sulphate and dermatan sulphate. In order to evaluate enzyme-replacement therapy for MPS II we(More)
Iduronate 2-sulfatase (IDS, EC 3.1.6.13) is required for the lysosomal degradation of heparan sulfate and dermatan sulfate. Mutations causing IDS deficiency in humans result in the lysosomal storage of these glycosaminoglycans and Hunter syndrome, an X chromosome-linked disease. We have isolated and sequenced a 2.3-kilobase cDNA clone coding for the entire(More)
Mucopolysaccharidosis type I (MPS I, Hurler and Scheie syndromes) is an autosomal recessive lysosomal storage disorder that results from a deficiency of the hydrolase alpha-L-iduronidase (IDUA) which is involved in the lysosomal degradation of both heparan sulphate (HS) and dermatan sulphate (DS). Patients with MPS I store and excrete large amounts of(More)
The mRNA sequence of the human intrinsic clotting factor IX (Christmas factor) has been completed and is 2802 residues long, including a 29 residue long 5' non-coding and a 1390 residue long 3' non-coding region, but excluding the poly(A) tail. The factor IX gene is approximately 34 kb long and we define, by the sequencing of 5280 residues, the presumed(More)
BACKGROUND The hallmark of lysosomal storage disorders (LSDs) is microscopically demonstrable lysosomal distension. In mucopolysaccharidosis type IIIA (MPS IIIA), this occurs as a result of an inherited deficiency of the lysosomal hydrolase sulphamidase. Consequently, heparan sulphate, a highly sulphated glycosaminoglycan, accumulates primarily within the(More)
Retroviral vector-mediated gene transfer has been central to the development of gene therapy. Retroviruses have several distinct advantages over other vectors, especially when permanent gene transfer is the preferred outcome. The most important advantage that retroviral vectors offer is their ability to transform their single stranded RNA genome into a(More)
Neurological pathology is characteristic of the mucopolysaccharidoses (MPSs) that store heparan sulphate (HS) glycosaminoglycan (gag) and has been proven to be refractory to systemic therapies. Substrate deprivation therapy (SDT) using general inhibitors of gag synthesis improves neurological function in mouse models of MPS, but is not specific to an MPS(More)
We report studies that suggest enzyme replacement therapy will result in a significant reduction in disease progression and tissue pathology in patients with Maroteaux-Lamy syndrome (Mucopolysaccharidosis type VI, MPS VI). A feline model for MPS VI was used to evaluate tissue distribution and clinical efficacy of three forms of recombinant human(More)
The role of the extracellular signal-regulated kinase (ERK) 1 and ERK2 in the neutrophil chemotactic response remains to be identified since a previously used specific inhibitor of MEK1 and MEK2, PD98059, that was used to provide evidence for a role of ERK1 and ERK2 in regulating chemotaxis, has recently been reported to also inhibit MEK5. This issue is(More)
Lentivirus vectors are being investigated as gene delivery vehicles for cystic fibrosis airway gene therapy. Vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped vectors transduce airway epithelia via receptors that are located predominantly on the basolateral surface of the airway epithelium. Effective transduction with VSV-G-pseudotyped vectors(More)