Donald Hamelberg

Learn More
Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series(More)
Slow diffusive conformational transitions play key functional roles in biomolecular systems. Our ability to sample these motions with molecular dynamics simulation in explicit solvent is limited by the slow diffusion of the solvent molecules around the biomolecules. Previously, we proposed an accelerated molecular dynamics method that has been shown to(More)
The structure and dynamics of the grooves of DNA are of immense importance for recognition of DNA by proteins and small molecules as well as for the packaging of DNA into nucleosomes and viral particles. Although there is general agreement that the minor groove of DNA varies in a sequence-dependent manner and is narrow in AT regions, alternative models have(More)
Many dicationic amidine compounds bind in the DNA minor groove and have excellent biological activity against a range of infectious diseases. Para-substituted aromatic diamidines such as furamidine, which is currently being tested against trypanosomiasis in humans, and berenil, which is used in animals, are typical examples of this class. Recently, a(More)
Phosphorylation of proteins by kinases is the most commonly studied class of posttranslational modification, yet its structural consequences are not well understood. The human SR (serine-arginine) protein ASF/SF2 relies on the processive phosphorylation of the serine residues of eight consecutive arginine-serine (RS) dipeptide repeats at the C terminus by(More)
Molecular dynamics (MD) simulation is the standard computational technique used to obtain information on the time evolution of the conformations of proteins and many other molecular systems. However, for most biological systems of interest, the time scale for slow conformational transitions is still inaccessible to standard MD simulations. Several sampling(More)
Localized water molecules in the binding pockets of proteins play an important role in noncovalent association of proteins and small drug compounds. At times, the dominant contribution to the binding free energy comes from the release of localized water molecules in the binding pockets of biomolecules. Therefore, to quantify the energetic importance of(More)
Different models for minor groove structures predict that the conformation is essentially fixed by sequence and has an influence on local ion distribution or alternatively that temporal positions of ions around the minor groove can affect the structure if they neutralize cross-strand phosphate charges. Our previous studies show that the minor groove in an(More)
We have used chemical protein synthesis and advanced physical methods to probe dynamics-function correlations for the HIV-1 protease, an enzyme that has received considerable attention as a target for the treatment of AIDS. Chemical synthesis was used to prepare a series of unique analogues of the HIV-1 protease in which the flexibility of the "flap"(More)
Various advanced simulation techniques, which are used to sample the statistical ensemble of systems with complex Hamiltonians, such as those displayed in condensed matters and biomolecular systems, rely heavily on successfully reweighting the sampled configurations. The sampled points of a system from an elevated thermal environment or on a modified(More)