Learn More
Phosphorylation of proteins by kinases is the most commonly studied class of posttranslational modification, yet its structural consequences are not well understood. The human SR (serine-arginine) protein ASF/SF2 relies on the processive phosphorylation of the serine residues of eight consecutive arginine-serine (RS) dipeptide repeats at the C terminus by(More)
Actin protofilaments in the erythrocyte membrane skeleton are uniformly approximately 37nm. This length may be in part attributed to a "molecular ruler" made of erythrocyte tropomodulin (E-Tmod) and tropomyosin (TM) isoforms 5 or 5b. We previously mapped the E-Tmod binding site to TM5 N-terminal heptad repeat residues "a" (I(7), I(14)), "d" (V(10)) and "f"(More)
The structure and dynamics of the grooves of DNA are of immense importance for recognition of DNA by proteins and small molecules as well as for the packaging of DNA into nucleosomes and viral particles. Although there is general agreement that the minor groove of DNA varies in a sequence-dependent manner and is narrow in AT regions, alternative models have(More)
Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series(More)
Despite growing evidence suggesting the importance of enzyme conformational dynamics (ECD) in catalysis, a consensus on how precisely ECD influences the chemical step and reaction rates is yet to be reached. Here, we characterize ECD in Cyclophilin A, a well-studied peptidyl-prolyl cis-trans isomerase, using normal and accelerated, atomistic molecular(More)
Slow diffusive conformational transitions play key functional roles in biomolecular systems. Our ability to sample these motions with molecular dynamics simulation in explicit solvent is limited by the slow diffusion of the solvent molecules around the biomolecules. Previously, we proposed an accelerated molecular dynamics method that has been shown to(More)
The presence of serine/threonine-proline motifs in proteins provides a conformational switching mechanism of the backbone through the cis/trans isomerization of the peptidyl-prolyl (omega) bond. The reversible phosphorylation of the serine/threonine modulates this switching in regulatory proteins to alter signaling and transcription. However, the mechanism(More)
Localized water molecules in the binding pockets of proteins play an important role in noncovalent association of proteins and small drug compounds. At times, the dominant contribution to the binding free energy comes from the release of localized water molecules in the binding pockets of biomolecules. Therefore, to quantify the energetic importance of(More)
Various advanced simulation techniques, which are used to sample the statistical ensemble of systems with complex Hamiltonians, such as those displayed in condensed matters and biomolecular systems, rely heavily on successfully reweighting the sampled configurations. The sampled points of a system from an elevated thermal environment or on a modified(More)