Learn More
Copper-resistant strains of Pseudomonas syringae pathovar tomato accumulate copper and develop blue colonies on copper-containing media. Three of the protein products of the copper-resistance operon (cop) were characterized to provide an understanding of the copper-resistance mechanism and its relationship to copper accumulation. The Cop proteins, CopA (72(More)
Twenty strains of Pseudomonas syringae pv. tomato were examined for the presence of plasmid DNA. P. syringae pv. tomato plasmids were grouped into five size classes: class A ranged from 95 to 103 kilobases (kb); class B ranged from 71 to 83 kb; class C ranged from 59 to 67 kb; class D ranged from 37 to 39 kb; and class E was 29 kb. All strains contained at(More)
Copper-resistant and copper-sensitive strains of Pseudomonas syringae, as well as many other pseudomonads, contain chromosomal DNA homologous to the plasmid-borne copper resistance operon (copABCD). cop homologs were cloned from the chromosome of P. syringae pv. tomato PT12.2, which had an elevated level of resistance to copper compared with typical(More)
Avirulence gene D (avrD) in strain PT23 of Pseudomonas syringae pv. tomato (Pst) specifies the production of syringolides, which are elicitors of plant defense reactions. An 83-kb indigenous plasmid (pPT23B) that carries avrD has been mapped and characterized and a putative par region was identified. pPT23B contains a large amount of DNA that is repeated in(More)
Copper ions are essential for bacteria but can cause a number of toxic cellular effects if levels of free ions are not controlled. Investigations of copper-resistant bacteria have revealed several mechanisms, mostly plasmid-determined, that prevent cellular uptake of high levels of free copper ions. However, these studies have also revealed that bacteria(More)
The copper resistance (cop) operon promoter (Pcop) of Pseudomonas syringae is copper-inducible, and requires the regulatory genes copRS. Sequence analysis revealed that CopR has significant homology with other known activator proteins from bacterial two-component regulatory systems. In the present study we characterized Pcop and its interaction with CopR.(More)
Copper-resistant strains of Xanthomonas axonopodis pv. vesicatoria were previously shown to carry plasmid-borne copper resistance genes related to the cop and pco operons of Pseudomonas syringae and Escherichia coli, respectively. However, instead of the two-component (copRS and pcoRS) systems determining copper-inducible expression of the operons in P.(More)
Plasmid-borne copper resistance genes from copper-resistant strains of Xanthomonas campestris pv. vesicatoria from California, Florida, and Oklahoma shared structural similarities. A strain of X. campestris pv. campestris also contained plasmid-borne copper resistance genes similar to the resistance genes from X. campestris pv. vesicatoria. Furthermore, a(More)
Cupric sulfate induced mRNA specific to the copper resistance gene cluster previously cloned from Pseudomonas syringae pv. tomato PT23. mRNA from each of the four genes of this cluster responded in a similar manner to induction over time and with different concentrations of cupric sulfate. Promoter fusion constructs indicated the presence of a single(More)
Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138(More)