Donal D. C. Bradley

Learn More
We demonstrate a monolithic photonic integration platform that leverages the existing state-of-the-art CMOS foundry infrastructure. In our approach, proven XeF 2 post-processing technology and compliance with electronic foundry process flows eliminate the need for specialized substrates or wafer bonding. This approach enables intimate integration of large(More)
Devices based on solution processable organic materials are promising for inexpensive large area electronics on transparent fl exible plastic substrates. [ 1 ] In practice, however, electrodes in organic devices typically consist of vacuum deposited materials that are largely incompatible with this goal. The most widely used transparent electrode for(More)
Free-standing serum-albumin mats can transport protons over millimetre length-scales. The results of photoinduced proton transfer and voltage-driven proton-conductivity measurements, together with temperature-dependent and isotope-effect studies, suggest that oxo-amino-acids of the protein serum albumin play a major role in the translocation of protons via(More)
Achievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), by(More)
We report 'broadband light-sensing' all-polymer phototransistors with the nanostructured bulk heterojunction (BHJ) layers of visible (VIS) light-sensing electron-donating (p-type) polymer and near infrared (NIR) light-sensing electron-accepting (n-type) polymer.(More)
Copper thiocyanate (CuSCN) is introduced as a hole-injection/hole-transport layer (HIL/HTL) for solution-processed organic light-emitting diodes (OLEDs). The OLED devices reported here with CuSCN as HIL/HTL perform significantly better than equivalent devices fabricated with a PEDOT:PSS HIL/HTL, and solution-processed, phosphorescent, small-molecule, green(More)
Polymer-solvent compound formation, occurring via co-crystallization of polymer chains and selected small-molecular species, is demonstrated for the conjugated polymer poly(9,9-dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with(More)
Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However,(More)
Solution-crystallization is studied for two polyfluor-ene polymers possessing different side-chain structures. Thermal analysis and temperature-dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X-ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures.(More)
Metamaterials are a promising new class of materials, in which sub-wavelength physical structures, rather than variations in chemical composition, can be used to modify the nature of their interaction with electromagnetic radiation. Here we show that a metamaterials approach, using a discrete physical geometry (conformation) of the segments of a polymer(More)