Learn More
Isothermal titration calorimetry (ITC) is the method of choice for obtaining thermodynamic data on a great variety of systems. Here we show that modern ITC apparatus and new processing methods allow researchers to obtain a complete kinetic description of systems more diverse than previously thought, ranging from simple ligand binding to complex RNA folding.(More)
A large proportion of human cancers result from exposure of individuals to environmental or occupational carcinogens. The early detection of carcinogen-induced mutations is a prerequisite for the identification of individuals at risk for developing cancer. Short G-rich repetitive sequences have been previously identified as hot-spots for frameshift(More)
Aromatic amines have been studied for more than a half-century as model carcinogens representing a class of chemicals that form bulky adducts to the C8 position of guanine in DNA. Among these guanine adducts, the N-(2'-deoxyguanosin-8-yl)-aminofluorene (G-AF) and N-2-(2'-deoxyguanosin-8-yl)-acetylaminofluorene (G-AAF) derivatives are the best studied.(More)
The prototypic Y family DNA polymerase IV (PolIV) of Escherichia coli is involved in multiple replication-associated processes including spontaneous mutagenesis, translesion synthesis (TLS), cell fitness, survival under stressful conditions and checkpoint like functions. It interacts physically and functionally with the replisome's beta processivity clamp(More)
Most DNA polymerases interact with their cognate processive replication factor through a small peptide, this interaction being absolutely required for their function in vivo. We have solved the crystal structure of a complex between the beta sliding clamp of Escherichia coli and the 16 residue C-terminal peptide of Pol IV (P16). The seven C-terminal(More)
N-2-acetylaminofluorene (AAF), a potent rat liver carcinogen, binds primarily to the C-8 position of guanine residues. In a bacterial forward mutation assay, more than 90% of the mutations induced by -AAF adducts are frameshift mutations located at specific sites: the so-called mutation hot spots. We are particularly interested in a class of -2 frameshift(More)
The NarI sequence represents a strong mutation hot spot for -2 frameshift mutations induced by N-2-acetylaminofluorene (AAF), a strong chemical carcinogen. Only when bound to the third (underlined) guanine (5'-GGCGCC-->GGCC) can AAF trigger frameshift mutations, suggesting the involvement of a slipped replication intermediate with a two-nucleotide bulge.(More)
2-Acetylaminofluorene (AAF), a potent rat liver carcinogen that binds covalently to the C-8 position of guanine residues in DNA, is an effective frameshift mutagen. The mutations are distributed nonrandomly, in that most are located at a few specific DNA sequences (i.e., mutation hot spots). Among these hot spots, the Nar I sequence (GGCGCC) is especially(More)
Using a forward-mutation assay based on the inactivation of the tetracycline-resistance gene located on plasmid pBR322, we have determined the mutation spectrum induced in Escherichia coli by cisplatin [cis-diamminedichloroplatinum(II)], a widely used antitumor drug. Cisplatin is known to form mainly intrastrand diadducts at ApG and GpG sites. We found that(More)
DNA replication is an asymmetric process involving concurrent DNA synthesis on leading and lagging strands. Leading strand synthesis proceeds concomitantly with fork opening, whereas synthesis of the lagging strand essentially takes place on a single-stranded template. The effect of this duality on DNA damage processing by the cellular replication machinery(More)