Learn More
Activation of interleukin-1 (IL-1) receptor (IL-1R), Toll-like receptor 2 (TLR2), and TLR4 triggers NF-kappaB and mitogen-activated protein kinase (MAPK)-dependent signaling, thereby initiating immune responses. Tollip has been implicated as a negative regulator of NF-kappaB signaling triggered by these receptors in in vitro studies. Here, deficient mice(More)
Helicobacter pylori virulence factors have been suggested to be important in determining the outcome of infection. The H. pylori adhesion protein BabA2 is thought to play a crucial role in bacterial colonization and in induction of severe gastric inflammation, particularly in combination with expression of CagA and VacA. However, the influence of these(More)
Helicobacter pylori (H. pylori) infection is one of the most common infections in human beings worldwide. H. pylori express lipopolysaccharides and flagellin that do not activate efficiently Toll-like receptors and express dedicated effectors, such as γ-glutamyl transpeptidase, vacuolating cytotoxin (vacA), arginase, that actively induce tolerogenic(More)
NLR family apoptosis inhibitory proteins (NAIPs) belong to both the Nod-like receptor (NLR) and the inhibitor of apoptosis (IAP) families. NAIPs are known to form an inflammasome with NLRC4, but other in vivo functions remain unexplored. Using mice deficient for all NAIP paralogs (Naip1-6(Δ/Δ)), we show that NAIPs are key regulators of colorectal(More)
BACKGROUND & AIMS Despite the proven ability of immunization to reduce Helicobacter infection in mouse models, the precise mechanism of protection has remained elusive. This study explores the possibility that interleukin (IL)-17 plays a role in the reduction of Helicobacter infection following vaccination of wild-type animals or in spontaneous reduction of(More)
BACKGROUND Granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy is effective in treating some Crohn's disease (CD) patients and protects mice from colitis induced by dextran sulfate sodium (DSS) administration. However, its mechanisms of action remain elusive. We hypothesized that GM-CSF affects intestinal mucosal repair. METHODS DSS colitic(More)
Respiratory syncytial virus (RSV) is a major respiratory pathogen responsible for severe pulmonary disease. We have developed a parenterally administered vaccine, BBG2Na, which is currently in a phase III clinical trial. BBG2Na comprises residues 130--230 of RSV-A G protein (G2Na) fused to the BB carrier protein. In this study, we show that BBG2Na can be(More)
The design of new antigens with both high immunogenic and safety properties is of particular interest to vaccine against infectious diseases. In the present study, we describe the synthesis and the refolding of peptide G20 derived from the Human Respiratory Syncytial Virus (hRSV) G-protein. G20 (MEF G140-190 G144-158) is a peptide of 69 amino acids with two(More)
BACKGROUND The intestinal epithelium accommodates with a myriad of commensals to maintain immunological homeostasis, but the underlying mechanisms regulating epithelial responsiveness to flora-derived signals remain poorly understood. Herein, we sought to determine the role of the Toll/interleukin (IL)-1 receptor regulator Toll-interacting protein (Tollip)(More)
Mutations in the Escherichia coli (E. coli) and Salmonella lpxM gene have been shown to result in strains which grow normally and which produce a non-myristoylated lipopolysaccharide (nmLPS) with strongly reduced endotoxicity. Using homologous recombination, we inactivated the lpxM gene in BL21 (DE3), a strain widely used for the production of recombinant(More)