Dominique Thuringer

Learn More
Evidence was provided, in the preceding paper (Thuringer & Sauvé, 1992), that the external Ca(2+)-dependent phase of the Ca2+ signals evoked by bradykinin (BK) or caffeine in bovine aortic endothelial cells (BAE), differ in their respective sensitivity to procaine. To examine whether the emptying of the InsP3-sensitive Ca2+ store is the signal for(More)
The vectorial transport of ions and water across epithelial cells depends to a large extent on the coordination of the apical and basolateral ion fluxes with energy supply. In this work we provide the first evidence for a regulation by the 5'-AMP-activated protein kinase (AMPK) of the calcium-activated potassium channel KCa3.1 expressed at the basolateral(More)
OBJECTIVE The aim of our study was to determine the main electrophysiological alterations associated with cardiac dilation in MS200 strain Syrian hamsters, a model of genetically determined cardiomyopathy. METHODS Ventricular action potentials (APs) were recorded with standard microelectrodes in isolated hearts from 120-day-old cardiomyopathic (strain(More)
The effect of 2,3-butanedione 2-monoxime (BDM), a substance possessing phosphatase-like activity, was studied on action potentials of isolated rat heart and on the slow inward calcium current and outward current (including the 4-aminopyridine (4-AP)-sensitive transient outward component), in rat ventricular myocytes. In contrast to what was observed by(More)
1. The effects of the potassium channel opener (KCO) aprikalim (RP 52891) on the nucleotide-induced modulation of ATP-sensitive K+ (KATP) channels in freshly dissociated ventricular myocytes of guinea-pig heart, were studied by use of the inside-out patch-clamp technique. The internal surface of the excised membrane patch was initially bathed with a(More)
The mechanism whereby RP 49356, a novel potassium channel opener, activates ATP-sensitive K+ channels (K+-ATP channels) in isolated cardiac cells was investigated with the patch-clamp technique. When directly applied onto the inner face of an inside-out membrane patch, RP 49356 (300 microM) had no effect on K+ channels opened in an ATP-free solution. In(More)
Normally-polarized tissue from the human atrial myocardium usually exhibits a diastolic depolarization phase which can be suppressed reversibly by Cs+ or enhanced by inhibiting the inward rectifier K+ current, iK1, with Ba2+. (Escande et al., 1986). Because the suppression of the diastolic slope by Cs+ leads to a hyperpolarization of the cell membrane at(More)
A gradual loss of functional gap junction between tumor cells has been reported with colorectal cancer (CRC) progression. Here, we explored if colon cancer cells could also affect gap junctions in blood capillary cells. Human microvascular endothelial cells (HMEC) were cultured with two CRC cell lines established from a unique patient. SW480 cells, derived(More)
We used the patch-clamp technique to investigate, via the activation of Ca(2+)-activated potassium channels [K(Ca2+)channels], the effects of extracellular pH (pHo) on the bradykinin (BK)-stimulated rise in cytosolic Ca2+ concentration in bovine aortic endothelial cells (BAE). In cell-attached experiments, the external application of BK caused a transient(More)
BACKGROUND Volatile anesthetics, such as halothane and isoflurane, have been reported to affect the endothelium mediated relaxation of vascular smooth muscle cells. Because the activity of the constitutive nitric oxide synthase in endothelial cells depends on the availability of intracellular Ca2+, there is a definite possibility that the observed(More)