Learn More
Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate(More)
Leucine acts as a signal nutrient in promoting protein synthesis in skeletal muscle and adipose tissue via mTOR pathway activation, and may be of interest in age-related sarcopenia. However, hyper-activation of mTOR/S6K1 has been suggested to inhibit the first steps of insulin signaling and finally promote insulin resistance. The impact of long-term dietary(More)
Skeletal muscle loss is observed in several physiopathological situations. Strategies to prevent, slow down, or increase recovery of muscle have already been tested. Besides exercise, nutrition, and more particularly protein nutrition based on increased amino acid, leucine or the quality of protein intake has generated positive acute postprandial effect on(More)
Immobilization produces morphological, physiological, and biochemical alterations in skeletal muscle leading to muscle atrophy and long periods of recovery. Muscle atrophy during disuse results from an imbalance between protein synthesis and proteolysis but also between apoptosis and regeneration processes. This work aimed to characterize the mechanisms(More)
Sustained muscle wasting due to immobilization leads to weakening and severe metabolic consequences. The mechanisms responsible for muscle recovery after immobilization are poorly defined. Muscle atrophy induced by immobilization worsened in the lengthened tibialis anterior (TA) muscle but not in the shortened gastrocnemius muscle. Here, we investigated(More)
Portal glucose delivery enhances net hepatic glucose uptake (NHGU) relative to peripheral glucose delivery. We hypothesize that the sympathetic nervous system normally restrains NHGU, and portal glucose delivery relieves the inhibition. Two groups of 42-h-fasted conscious dogs were studied using arteriovenous difference techniques. Denervated dogs (DEN;(More)
This study was carried out to analyse glucocorticoid-induced muscle wasting and subsequent recovery in adult (6-8 months) and old (18-24 months) rats because the increased incidence of various disease states results in hypersecretion of glucocorticoids in ageing. Adult and old rats received dexamethasone in their drinking water for 5 or 6 d and were then(More)
Leucine has a major anabolic impact on muscle protein synthesis in young as in old animals. However, myosin heavy chain (MHC), sarcoplasmic and mitochondrial proteins may differently respond to anabolic factors, especially during aging. To test this hypothesis, fractional synthesis rates (FSR) of the three muscle protein fractions were measured using a(More)
Prolonged inactivity induces muscle loss due to an activation of proteolysis and decreased protein synthesis; the latter is also involved in the recovery of muscle mass. The aim of the present work was to explore the evolution of muscle mass and protein metabolism during immobilization and recovery and assess the effect of a nutritional strategy for(More)
This experiment was undertaken to examine leucine responsiveness of muscle protein synthesis during dexamethasone treatment and the subsequent recovery in young (4-5 weeks), adult (10-11 months) and old rats (21-22 months). Rats received dexamethasone in their drinking water. The dose and length of the treatment was adapted in order to generate the same(More)