Dominik Wöll

Learn More
This tutorial review summarizes the most important results and developments in the field of polymer science by means of single molecule fluorescence spectroscopy (SMFS) at ambient temperatures. A broad range of topics will be addressed and it will be discussed which single molecule methods are suitable to get the maximum amount of information about polymer(More)
Monitoring of the formation of stable fluorescent nanoparticles from controlled mixing of a THF solution of poly(fluorene ethynylene)-block-poly(ethylene glycol) in a microfluidic laminar flow crossjunction by spatially resolved fluorescence spectroscopy reveals the time scale of particle formation as well as incorporation of small molecule guests and the(More)
Single molecule tracking provides unprecedented insights into diffusional processes of systems in life and material sciences. Determination of molecule positions with high accuracy and correct connection of the determined positions to tracks is a challenging task with, so far, no universal solution for single fluorescing molecules tackling the challenge of(More)
Fluorescence correlation spectroscopy (FCS) is a well-established technique for studying dynamic processes and interactions with minimal invasion into the corresponding system. Even though FCS has been mainly applied to biological systems, within the last 15 years an increasing number of studies in material sciences have appeared, demonstrating its enormous(More)
Electroporation is a physical method of transferring molecules into cells and tissues. It takes advantage of the transient permeabilization of the cell membrane induced by electric field pulses, which gives hydrophilic molecules access to the cytoplasm. This method offers high transfer efficiency for small molecules that freely diffuse through electrically(More)
DNA chips are widely used for genomic analysis. Currently, high-density DNA chips can be synthesized with up to several hundred thousand different spots on an area of 1 cm. In principle, the complete human genome can be probed with such a chip. The required high spot densities can be achieved by photolithographic in situ DNA-chip synthesis. In this method,(More)
A spectroscopic study of a variety of covalently linked thioxanthone(TX)-linker-2-(2-nitrophenyl)propoxycarbonyl(NPPOC)-substrate conjugates is presented. Herein, the TX chromophore functions as an intramolecular sensitizer to the NPPOC moiety, a photolabile protecting group used in photolithographic DNA chip synthesis. The rate of electronic energy(More)
Thermoresponsive materials exhibit an enormous potential for tissue engineering, separation systems, and drug delivery. We investigated the diffusion of laponite clay nanoparticles, which serve as physical cross-linkers to achieve improved material properties in poly(N-isopropylacrylamide) (PNIPAM)-clay composite hydrogels close to the gel point. The(More)
Light-induced release of photolabile protecting groups is a key step in the photolithographic in-situ synthesis of oligonucleotides in the production of high-density DNA-chips. Protecting groups of the o-nitrophenyl type that are preferentially used for this purpose have rather low absorption coefficients at 366 nm, the wavelength of the most conveniently(More)