Dominik Max Zumbühl

Learn More
In situ control of spin-orbit coupling in coherent transport using a clean GaAs/AlGaAs two-dimensional electron gas is realized, leading to a gate-tunable crossover from weak localization to antilocalization. The necessary theory of 2D magnetotransport in the presence of spin-orbit coupling beyond the diffusive approximation is developed and used to analyze(More)
Recent theories suggest that the quasiparticles that populate certain quantum Hall states should exhibit exotic braiding statistics that could be used to build topological quantum gates. Confined systems that support such states at a filling fraction ν = 5/2 are of particular interest for testing these predictions. Here, we report transport measurements of(More)
We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak localization, consistent with random matrix theory results once orbital(More)
We present an improved nuclear refrigerator reaching 0.3 mK, aimed at microkelvin nanoelectronic experiments, and use it to investigate metallic Coulomb blockade thermometers (CBTs) with various resistances R. The high-R devices cool to slightly lower T, consistent with better isolation from the noise environment, and exhibit electron-phonon cooling(More)
We present measurements of the rates for an electron to tunnel on and off a quantum dot, obtained using a quantum point contact charge sensor. The tunnel rates show exponential dependence on drain-source bias and plunger gate voltages. The tunneling process is shown to be elastic, and a model describing tunneling in terms of the dot energy relative to the(More)
We propose a new scheme aimed at cooling nanostructures to microkelvin temperature based on the well established technique of adiabatic nuclear demagnetization: we attach each device measurement lead to an individual nuclear refrigerator, allowing efficient thermal contact to a microkelvin bath. On a prototype consisting of a parallel network of nuclear(More)
Conductance fluctuations in GaAs quantum dots with spin-orbit and Zeeman coupling are investigated experimentally and compared to a random matrix theory formulation that defines a number of regimes of spin symmetry depending on experimental parameters. Accounting for orbital coupling of the in-plane magnetic field, which can break time-reversal symmetry,(More)
We report a thermally activated metastability in a GaAs double quantum dot exhibiting real-time charge switching in diamond shaped regions of the charge stability diagram. Accidental charge traps and sensor backaction are excluded as the origin of the switching. We present an extension of the canonical double dot theory based on an intrinsic, thermal(More)
We present transport measurements of cleaved edge overgrowth GaAs quantum wires. The conductance of the first mode reaches 2e(2)/h at high temperatures T≳10 K, as expected. As T is lowered, the conductance is gradually reduced to 1e(2)/h, becoming T independent at T≲0.1 K, while the device cools far below 0.1 K. This behavior is seen in several wires, is(More)
We present nuclear spin relaxation measurements in GaAs epilayers using a new pump-probe technique in all-electrical, lateral spin-valve devices. The measured T(1) times agree very well with NMR data available for T>1 K. However, the nuclear spin relaxation rate clearly deviates from the well-established Korringa law expected in metallic samples and follows(More)