Dominic R. Alfonso

Learn More
A driver program for carrying out nudged elastic band optimizations of minimum energy reaction pathways is described. This approach allows for the determination of minimum energy pathways using only energies and gradient information. The driver code has been interfaced with the GAUSSIAN 98 program. Applications to two isomerization reactions and to a(More)
Atomically precise, inherently charged Au(25) clusters are an exciting prospect for promoting catalytically challenging reactions, and we have studied the interaction between CO(2) and Au(25). Experimental results indicate a reversible Au(25)-CO(2) interaction that produced spectroscopic and electrochemical changes similar to those seen with cluster(More)
The interplay of local energetics, local electron occupancies, and local density of states is the key to the understanding of chemical reactivity. We define local measures, within a nonorthogonal tight-binding scheme, which clearly and unambiguously determine these local properties for an aggregate of atoms, such as a solid or a cluster. Using these(More)
The anionic charge of atomically precise Au25(SC2H4Ph)18(-) nanoclusters (abbreviated as Au25(-)) is thought to facilitate the adsorption and activation of molecular species. We used optical spectroscopy, nonaqueous electrochemistry, and density functional theory to study the interaction between Au25(-) and O2. Surprisingly, the oxidation of Au25(-) by O2(More)
Recent experimental studies have reported the electrochemical reduction of carbon dioxide (CO2) into CO at atomically precise negatively charged Au25 (-) nanoclusters. The studies showed CO2 conversion at remarkably low overpotentials, but the exact mechanisms and nature of the active sites remain unclear. We used first-principles density functional theory(More)
The use of atomistic Kinetic Monte Carlo method was explored to examine the influence of sulfur poisoning on CO adsorption on Pd(100) surface. The model explicitly incorporates key elementary processes such as CO adsorption and CO desorption including diffusion of surface CO and S species. Relevant energetic and kinetic parameters were derived using(More)
  • 1