Dominic Maier

Learn More
In this study we established the simultaneous status of TP53, p16, p14ARF and PTEN tumor suppressor genes in 34 randomly chosen human glioma cell lines. Nine cell lines (26.4%) harbored mutations or deletions in all four tumor suppressor genes and 22 cell lines (64%) had alterations in at least three. Mutations/deletions were found at the following(More)
The axonal projection mutations irregular chiasm C of Drosophila melanogaster comap and genetically interact with the roughest locus, which is required for programmed cell death in the developing retina. We cloned the genomic region in 3C5 by transposon tagging and identified a single transcription unit that produces a major, spatially and temporally(More)
The tumor suppressor PTEN negatively controls the phosphoinositide 3-kinase pathway for cell survival by dephosphorylating the phospholipid substrates phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. PTEN has been proposed to dephosphorylate focal adhesion kinase and is implicated in the regulation of cell spreading and(More)
When Xenopus gastrulae are made to misexpress Xwnt-8, or are exposed to lithium ions, they develop with a loss of anterior structures. In the current study, we have characterized the neural defects produced by either Xwnt-8 or lithium and have examined potential cellular mechanisms underlying this anterior truncation. We find that the primary defect in(More)
The gene deleted in malignant brain tumors 1 (DMBT1) has been proposed as a candidate tumor suppressor for brain, gastrointestinal, and lung cancer. It codes for a protein of unknown function belonging to the superfamily of scavenger receptor cysteine-rich proteins. We aimed at getting insights into the functions of DMBT1 by expression analyses and studies(More)
An evolutionary approach was applied to identify elements involved in the regulation of the segmentation gene fushi tarazu (ftz) by comparing the Drosophila melanogaster ftz gene with its Drosophila hydei homologue. The overall organization of the ftz gene is very similar in both species. Surprisingly, ftz proved to be inverted in the ANT-C of D. hydei with(More)
Hairless is a dominant loss of function mutation in Drosophila affecting the formation of adult sensory organs. In the mutants, neuronal precursor cells do not differentiate, suggesting that Hairless might be involved in specifying or realizing neuronal fate in the fly, similar to the 'pro-neural' genes of the achaete-scute complex. As highlighted by the(More)
Hedgehog (Hh) signaling is essential for normal growth, patterning, and homeostasis of many tissues in diverse organisms, and is misregulated in a variety of diseases including cancer. Cytoplasmic Hedgehog signaling is activated by multisite phosphorylation of the seven-pass transmembrane protein Smoothened (Smo) in its cytoplasmic C-terminus. Aside from a(More)
The Enhancer of split [E(spl)] gene complex belongs to the class of neurogenic loci, which, in a concerted action, govern neurogenesis in Drosophila. Two genetically distinct functions, vital and neurogenic, reside within the complex defined by lethal mutations in the l(3) gro gene and by the typical neurogenic phenotype of deletions, respectively. Such(More)
Neurosporaxanthin, beta-apo-4'-carotenoic acid (C35), represents the end-product of the carotenoid pathway in Neurospora crassa. It is supposed to be synthesized in three steps catalyzed by sequential AL-2, CAO-2 and YLO-1 activities: (i) cyclization of 3,4-didehydrolycopene (C40); (ii) cleavage of torulene into beta-apo-4'-carotenal (C35); and finally(More)