Dominic Gehring

Learn More
The classical stretch shortening cycle (SSC) describes sagittal joint flexion-extensions in motions like running or hopping. However, lateral movements are integral components of team sports and are associated with frontal plane joint displacements. The purpose of this study is to identify neuromuscular and kinematical mechanisms determining motor control(More)
AIM Sledge jump systems (SJS) are often employed to examine the underlying mechanical and neuromuscular mechanisms of the stretch-shortening cycle (SSC) as they allow the systematic variation of impact velocity and energy. However, in existing SJS the jumps are not very comparable to natural jumps because of the long contact times (∼200%), which prevent the(More)
BACKGROUND Gender and fatigue are thought to affect the anterior cruciate ligament injury risk. In spite of much effort, the influence of these factors on knee joint biomechanics is still under discussion. The purpose of this study was to investigate kinematics, kinetics, and active muscle control strategies of the knee joint across gender in fatigue(More)
Load-dependant adjustments in lateral jumps are thought to rely on foot placement and on upper leg's kinematic and neuromuscular adaptations. The aim of this study was to elucidate task-specific adjustments during the initial impact phase under varying stretch-loads by the comparison of lateral jumps and lateral landings. Ten subjects performed lateral(More)
Noncontact injuries frequently occur during soccer matches and training. The purpose of this study was to examine the influences of different soccer shoe studs to kinematic, kinetic and electromyographic parameters in the knee joint. Six male soccer players performed complex turning movements (180 degrees ) with bladed and round studded soccer shoes. Ground(More)
Lateral movements like cutting are essential in many team sport disciplines. The aim of the present study was to analyse adaptations in motor control in response to task unpredictability during lateral movement execution. Twelve subjects performed lateral jumps with different landing modalities (stable, sliding or counteracting) that were either known(More)
The influence of preparation time on ankle joint biomechanics during highly dynamic movements is largely unknown. The aim of this study was to evaluate the impact of limited preparation time on ankle joint loading during highly dynamic run-and-cut movements. Thirteen male basketball players performed 45°-sidestep-cutting and 180°-turning manoeuvres in(More)
Sideward movements are associated with high incidences of lateral ankle sprains. Special shoe constructions might be able to reduce these injuries during lateral movements. The purpose of this study was to investigate whether medial compressible forefoot sole elements can reduce ankle inversion in a reactive lateral movement, and to evaluate those elements'(More)
Drop jumps and their adaptations to training have been extensively investigated. However, the influence of augmented feedback (aF) on stretch-shortening cycle (SSC) was not scrutinized so far despite the well-known positive effects of aF on motor performance and motor learning. The aim of the present study was therefore to investigate the effects of aF by(More)
A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the(More)