Learn More
Recent studies have demonstrated cyclooxygenase 2 (COX-2) overexpression in various human malignancies, especially in breast cancer, where COX-2 turned out to be a predictor of poor survival. To evaluate the relation of COX-2 and Ep-CAM overexpression and its prognostic significance, we performed a retrospective study on 212 breast cancer patients with a(More)
AIMS Epithelial cell adhesion molecule (EpCAM) is a cell surface protein with oncogenic features that is expressed on healthy human epithelia and corresponding malignant tumours. EpCAM expression frequently correlates with more aggressive tumour behaviour and new EpCAM-specific therapeutic agents have recently been approved for clinical use in patients with(More)
BACKGROUND Recently, EpCAM has attracted major interest as a target for antibody- and vaccine-based cancer immunotherapies. In breast cancer, the EpCAM antigen is overexpressed in 30-40% of all cases and this increased expression correlates with poor prognosis. The use of EpCAM-specific monoclonal antibodies is a promising treatment approach in these(More)
Pancreatic cancer is one of the most devastating human malignancies. Despite considerable research efforts, it remains resistant to almost all available treatment regimens. The human trophoblast cell-surface antigen, TROP2, was found to be strongly expressed in a variety of human epithelial cancers, correlating with aggressiveness and poor prognosis. TROP2(More)
AIMS Regulated intramembrane proteolysis has been shown to be an important mechanism for oncogenic activation of epithelial cell adhesion molecule (EpCAM) through nuclear translocation of the intracellular domain EpICD. Recent studies have identified new membrane-bound EpCAM variants. To evaluate the prevalence of two membranous EpCAM variants in human(More)
EpCAM is highly expressed on membrane of epithelial tumor cells and has been detected as soluble/secreted (sEpCAM) in serum of cancer patients. In this study we established an ELISA for in vitro diagnostics to measure sEpCAM concentrations in ascites. Moreover, we evaluated the influence of sEpCAM levels on catumaxomab (antibody) - dependent cellular(More)
BACKGROUND Abiraterone acetate (AA), a selective inhibitor of the CYP17 enzyme, demonstrated a significant improvement in the treatment of patients with metastatic castration-resistant prostate cancer. The risk of endocrine side effects, mainly an increased adrenal mineralocorticoid production, could limit its use in patients with atrial fibrillation. (More)
EpCAM is an attractive target for cancer therapy and the EpCAM-specific antibody catumaxomab has been used for intraperitoneal treatment of EpCAM-positive cancer patients with malignant ascites. New prognostic markers are necessary to select patients that mostly benefit from catumaxomab. Recent data showed that soluble EpCAM (sEpCAM) is capable to block the(More)
  • 1