Domine Leenaerts

Learn More
An inductorless low-noise amplifier (LNA) with active balun is proposed for multi-standard radio applications between 100 MHz and 6 GHz. It exploits a combination of a common-gate (CG) stage and an admittance-scaled common-source (CS) stage with replica biasing to maximize balanced operation, while simultaneously canceling the noise and distortion of the(More)
linear wave interactions would also be nice for the students reading this book as a text. This book lacks explanation of the basic concepts for all the circuit theorems. It simply stated the theorems and demonstrated them with examples for the application. There is no discussion on superposition theorem and no index in the book. But in section 5.2, the idea(More)
This paper describes a 2.4GHz Wake-up Receiver (WuRx) designed to operate with low-accuracy (<0.5%) frequency references [1], enabling crystal-less and thus low-cost wireless sensor nodes (WSNs). Robustness to frequency error is achieved by combining non-coherent energy detection with a broadband-IF superheterodyne architecture, and by using a(More)
An NPN-based temperature sensor with digital output transistors has been realized in a 65-nm CMOS process. It achieves a batch-calibrated inaccuracy of ±0.5 C (3σ) and a trimmed inaccuracy of ±0.2 C (3σ) over the temperature range from −70 C to 125 C. This performance is obtained by the use of NPN transistors as sensing elements, the use of dynamic(More)
This study describes a method of implementing a fully integrated ultra-low-power (ULP) radio for wireless sensor networks (WSNs). This is achieved using an ad hoc modulation scheme (impulse radio), with a bandwidth of 17.7 MHz in the 2.4 GHz—ISM band and a specific medium access control (MAC) protocol, based on a duty-cycled wake-up radio and a crystal-less(More)
This paper demonstrates a low-jitter clock multiplier unit that generates a 10-GHz output clock from a 2.5-GHz reference clock. An integrated 10-GHz LC oscillator is locked to the input clock, using a simple and fast phase detector circuit that overcomes the speed limitation of a conventional tri-state phase frequency detector due to the lack of an internal(More)
The design of a 100 kHz frequency reference based on the electron mobility in a MOS transistor is presented. The proposed low-voltage low-power circuit requires no off-chip components, making it suitable for application in wireless sensor networks (WSN). After a single-point calibration, the spread of its output frequency is less than 1.1% (3 ) over the(More)