Domenico Stranges

Learn More
The competition between rearrangement of the excited allyl radical via a 1,3 sigmatropic shift versus sequential 1,2 shifts has been observed and characterized using isotopic substitution, laser excitation, and molecular beam techniques. Both rearrangements produce a 1-propenyl radical that subsequently dissociates to methyl plus acetylene. The 1,3 shift(More)
Dissociation of the allyl radical, CH(2)CHCH(2), and its deuterated isotopolog, CH(2)CDCH(2), have been investigated using trajectory calculations on an ab initio ground-state potential energy surface calculated for 97,418 geometries at the coupled cluster single and double and perturbative treatment of triple excitations, with the augmented correlation(More)
In this work, we present and analyze in detail new and recent ionization cross section and mass spectrum determinations, collected in the case of He*, Ne*-H2O, -H2S, and -NH3 ionizing collisions. These sets of data, obtained under the same experimental conditions, are relevant to identify differences in the autoionization stereodynamics of the three(More)
We report direct experimental and theoretical evidence that, under single-collision conditions, the dominant product channels of the O((3)P) + propyne and O((3)P) + allene isomeric reactions lead in both cases to CO formation, but the coproducts are singlet ethylidene ((1)CH3CH) and singlet ethylene (CH2CH2), respectively. These data, which settle a(More)
We performed synergic experimental/theoretical studies on the mechanism of the O((3)P) + propyne reaction by combining crossed molecular beams experiments with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy (Ec) with ab initio electronic structure calculations at a high level of theory of the relevant triplet and(More)
The formation of high-n Rydberg atoms from the neutral dissociation of superexcited states of I(2) formed by resonant two-photon excitation of molecular iodine using an ArF laser has been investigated. The high-n Rydberg atoms I* are formed by predissociation of the optically excited molecular Rydberg states I*(2)[R(B (2)Sigma(g) (+))] converging on the(More)
The reactions of both ground, (3)P, and electronically excited, (1)D, oxygen atoms with hydrogen sulfide, H(2)S, have been investigated by means of the crossed molecular beams method with mass spectrometric detection at different collision energies. Amongst the possible reaction channels those leading to HSO+H for the O((3)P) reaction and to HSO/HOS+H and(More)
As a member of the organo sulfidoboron (RBS) family, the hitherto elusive ethynylsulfidoboron molecule (HCCBS) has been formed via the bimolecular reaction of the boron monosulfide radical (BS) with acetylene (C2H2) under single collision conditions in the gas phase, exploiting the crossed molecular beams technique. The reaction mechanism follows indirect(More)
Organyl oxoboranes (RBO) are valuable reagents in organic synthesis due to their role in Suzuki coupling reactions. However, organyl oxoboranes (RBO) are only found in trimeric forms (RBO3) commonly known as boronic acids or boroxins; obtaining their monomers has proved a complex endeavor. Here, we demonstrate an oligomerization-free formation of organyl(More)