Domenico Felice

  • Citations Per Year
Learn More
We evaluate the information geometric complexity of entropic motion on low-dimensional Gaussian statistical manifolds in order to quantify how difficult it is to make macroscopic predictions about systems in the presence of limited information. Specifically, we observe that the complexity of such entropic inferences not only depends on the amount of(More)
A central issue in the science of complex systems is the quantitative characterization of complexity. In the present work we address this issue by resorting to information geometry. Actually we propose a constructive way to associate with a-in principle, any-network a differentiable object (a Riemannian manifold) whose volume is used to define the entropy.(More)
  • 1