Domenica Paoletti

Learn More
Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R500.(More)
We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400  deg^{2} patch of sky centered on RA 0 h, Dec. -57.5°. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven(More)
The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final(More)
Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular(More)
The European Space Agency’s Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products(More)
The possibility of employing a digital speckle pattern interferometer with optical fibers for nondestructive testing of artwork has been evaluated. A simple and accurate fiber-optic interferometer, able to perform real-time measurements in a hostile environment, has been realized with a minimum of optical components and a minimum of adjustments. As a result(More)
In the artwork conservation field, non contact diagnostic and imaging methods are widely used and most welcomed. In this work a new imaging tool, called Thermal Quasi-Reflectography (TQR), is proposed and demonstrated. It is based on the recording, by suitable procedures, of reflected infrared radiation in the MWIR band (3-5 μm). The technique, simple to(More)
We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from(More)
A new optoelectronic system is proposed for three-dimensional (3D) texture measurement. It is based on a projection unit in which light, coming from a laser diode coupled to an optical fiber, impinges on a diffractive optical element (DOE) to produce sinusoidal fringes. If the projected fringe pattern is viewed at an angle different from the projection(More)