Domenica D. Li Puma

Learn More
Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer's disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to(More)
AIM Histone deacetylases (HDACs) regulate the life-cycle of several viruses. We investigated the ability of different HDAC-inhibitors, to interfere with influenza virus A/Puerto Rico/8/34/H1N1 (PR8 virus) replication in Madin-Darby canine kidney and NCI cells. RESULTS 3-(5-(3-Fluorophenyl)-3-oxoprop-1-en-1-yl)-1-methyl-1H-pyrrol-2-yl)-N-hydroxyacrylamide(More)
Among the multiple factors concurring to Alzheimer's disease (AD) pathogenesis, greater attention should be devoted to the role played by infectious agents. Growing epidemiological and experimental evidence suggests that recurrent herpes simplex virus type-1 (HSV-1) infection is a risk factor for AD although the underlying molecular and functional(More)
In recent years, much effort has been devoted to identifying stimuli capable of enhancing adult neurogenesis, a process that generates new neurons throughout life, and that appears to be dysfunctional in the senescent brain and in several neuropsychiatric and neurodegenerative diseases. We previously reported that in vivo exposure to extremely low-frequency(More)
UNLABELLED SOX9 [(sex determining region Y)-box9] gene has been implicated in the development and progression of different neoplasms. This study investigated the role of Sox9 in the expression of TUBB3 gene, a marker of aggressiveness in ovarian cancer (OC), encoding βIII-tubulin protein. Gene expression was assessed by quantitative polymerase chain(More)
Amyloid β-protein (Aβ) pathologies have been linked to dysfunction of excitability in neurons of the hippocampal circuit, but the molecular mechanisms underlying this process are still poorly understood. Here, we applied whole-cell patch-clamp electrophysiology to primary hippocampal neurons and show that intracellular Aβ42 delivery leads to increased spike(More)
Alzheimer's disease is a devastating cureless neurodegenerative disorder affecting >35 million people worldwide. The disease is caused by toxic oligomers and aggregates of amyloid β protein and the microtubule-associated protein tau. Recently, the Lys-specific molecular tweezer CLR01 has been shown to inhibit aggregation and toxicity of multiple(More)
Perisynaptic accumulations of amyloid β-protein (Aβ) play a critical role in the synaptic dysfunction underlying the cognitive impairment observed in Alzheimer's disease. The methionine residue at position 35 (Met35) in Aβ is highly subject to oxidation in Alzheimer's disease brains. In hippocampal brain slices we found that long-term potentiation at(More)
Intracellular accumulation of amyloid-β (Aβ) protein has been proposed as an early event in AD pathogenesis. In patients with mild cognitive impairment, intraneuronal Aβ immunoreactivity was found especially in brain regions critically involved in the cognitive deficits of AD. Although a large body of evidence demonstrates that Aβ42 accumulates(More)
Protection of primary neurons and mouse brain from Alzheimer’s pathology by molecular tweezers Aida Attar, Cristian Ripoli, Elisa Riccardi, Panchanan Maiti, Domenica D. Li Puma, Tingyu Liu, Jane Hayes, Mychica R. Jones, Kristin Lichti-Kaiser, Fusheng Yang, Greg D. Gale, Chi-hong Tseng, Miao Tan, Cui-Wei Xie, Jeffrey L. Straudinger, Frank-Gerrit Klärner,(More)