Dolores Baksh

Learn More
Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a high proliferative potential and the capacity to differentiate into an osteogenic phenotype. HUCPVCs have thus been considered a possible extra-embryonic mesenchymal stem cell (MSC) source for cell-based therapies. To assess this potential, we compared HUCPVCs to the "gold standard"(More)
A considerable amount of retrospective data is available that describes putative mesenchymal stem cells (MSCs). However, there is still very little knowledge available that documents the properties of a MSC in its native environment. Although the precise identity of MSCs remains a challenge, further understanding of their biological properties will be(More)
This study examines the role of Wnt signaling events in regulating the differential potential of mesenchymal stem cells (MSCs) from adult bone marrow (BM). Immunohistochemical analysis of BM revealed co-localization of Wnt5a protein, a non-canonical Wnt, with CD45(+) cells and CD45(-) STRO-1(+) cells, while Wnt3a expression, a canonical Wnt, was associated(More)
Wnt signaling is involved in developmental processes and in adult stem cell homeostasis. This study analyzes the role(s) of key Wnt signaling mediators in the maintenance and osteogenesis of mesenchymal stem cells (MSCs). We focus specifically on the involvement of low-density lipoprotein-related protein 5 (LRP5), T-cell factor 1 (TCF1), and Frizzled (Fz)(More)
INTRODUCTION Mesenchymal progenitor cells (MPCs) are multipotent progenitor cells in adult tissues, for example, bone marrow (BM). Current challenges of clinical application of BM-derived MPCs include donor site morbidity and pain as well as low cell yields associated with an age-related decrease in cell number and differentiation potential, underscoring(More)
Cartilage repair and regeneration by stem cell-based tissue engineering could be of enormous therapeutic and economic potential benefit for an aging population. However, to use stem cells effectively, their natural environment must be understood in order to expand them in vitro without compromising their multilineage potential and their specific(More)
Cross talk between fibroblasts and keratinocytes, which maintains skin homeostasis, is disrupted in chronic wounds. For venous leg ulcers and diabetic foot ulcers, a bilayered living cellular construct (BLCC), containing both fibroblasts and keratinocytes that participate in cross talk, is a safe and effective product in healing chronic wounds. To show the(More)
  • 1