Learn More
BACKGROUND Within the emerging field of synthetic biology, engineering paradigms have recently been used to design biological systems with novel functionalities. One of the essential challenges hampering the construction of such systems is the need to precisely optimize protein expression levels for robust operation. However, it is difficult to design mRNA(More)
MOTIVATION RBSDesigner predicts the translation efficiency of existing mRNA sequences and designs synthetic ribosome binding sites (RBSs) for a given coding sequence (CDS) to yield a desired level of protein expression. The program implements the mathematical model for translation initiation described in Na et al. (Mathematical modeling of translation(More)
Subcellular localization is one of the key functional characteristics of proteins. An automatic and efficient prediction method for the protein subcellular localization is highly required owing to the need for large-scale genome analysis. From a machine learning point of view, a dataset of protein localization has several characteristics: the dataset has(More)
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons in the human brain. Although the majority of NDs are sporadic, evidence is accumulating that they have a strong genetic component. Therefore, significant efforts have been made in recent years to not only identify disease-causing genes but also genes that modify the(More)
There is a growing recognition for the importance of proteins with large intrinsically disordered (ID) segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving(More)
The immune system has unique defense mechanisms such as innate, humoral and cellular immunity. These mechanisms are closely related to prevent pathogens from spreading in the host and to clear them effectively. To get a comprehensive understanding of the immune system , it is necessary to integrate the knowledge through modeling. Many immune models have(More)
Helper T(Th) cells regulate immune response by producing various kinds of cytokines in response to antigen stimulation. The regulatory functions of Th cells are promoted by their differentiation into two distinct subsets, Th1 and Th2 cells. Th1 cells are involved in inducing cellular immune response by activating cytotoxic T cells. Th2 cells trigger B cells(More)
Communalities between large sets of genes obtained from high-throughput experiments are often identified by searching for enrichments of genes with the same Gene Ontology (GO) annotations. The GO analysis tools used for these enrichment analyses assume that GO terms are independent and the semantic distances between all parent–child terms are identical,(More)
Although passively administered antibodies are known to suppress the humoral immune response, the mechanism is not fully understood. Here, we developed a mathematical model to better understand the suppression phenomena in mice. Using this model, we tested the generally accepted but difficult to prove "epitope masking hypothesis." To simulate the hypothesis(More)