Doh-Kwon Lee

Learn More
Highly efficient copper-zinc-tin-selenide (Cu2ZnSnSe4 ; CZTSe) thin-film solar cells are prepared via the electrodepostion technique. A metallic alloy precursor (CZT) film with a Cu-poor, Zn-rich composition is directly deposited from a single aqueous bath under a constant current, and the precursor film is converted to CZTSe by annealing under a Se(More)
To achieve commercialization and widespread application of next-generation photovoltaics, it is important to develop flexible and cost-effective devices. Given this, the elimination of expensive transparent conducting oxides (TCO) and replacement of conventional glass substrates with flexible plastic substrates presents a viable strategy to realize(More)
Printable, wide band-gap chalcopyrite compound films (CuInGaS2, CIGS) were synthesized on transparent conducting oxide substrates. The wide band-gap and defective nature of the films reveal semi-transparent and bifacial properties that are beneficial for power generating window applications. Importantly, solar cell devices with these films demonstrate a(More)
Electric current in the mixed ionic-electronic conductor TiO2 is hysteretic, i.e. history-dependent, and its use is versatile in electronic devices. Nowadays, biologically inspired, analogue-type computing systems, known as neuromorphic systems, are being actively investigated owing to their new and intriguing physical concepts. The realization of(More)
A facile method for increasing the reaction rate of dye adsorption, which is the most time-consuming step in the production of dye-sensitized solar cells (DSSCs), was developed. Treatment of a TiO2 photoanode with aqueous nitric acid solution (pH 1) remarkably reduced the reaction time required to anchor a carboxylate anion of the dye onto the TiO2(More)
Tandem architecture between organic (dye-sensitized solar cell, DSSC) and inorganic (CuInGaSe2 thin film solar cell, CIGS) single-junction solar cells was constructed particularly based on a solution process. Arc-plasma deposition was employed for the Pt interfacial layer to minimize the damage to the layers of the CIGS bottom cell. Solar cell efficiency of(More)
Highly efficient planar perovskite optoelectronic devices are realized by amine-based solvent treatment on compact TiO2 and by optimizing the morphology of the perovskite layers. Amine-based solvent treatment between the TiO2 and the perovskite layers enhances electron injection and extraction and reduces the recombination of photogenerated charges at the(More)
We demonstrate the localized surface plasmon resonance (LSPR) effect, which can enhance the photovoltaic properties of dye-sensitized solar cells (DSSCs), and the long-term stability of size-controlled plasmonic structures using a noncorrosive redox mediator. Gold nanoparticles (Au NPs) were synthesized with a phase transfer method based on ligand exchange.(More)
The use of ultrathin c-Si (crystalline silicon) wafers thinner than 20 μm for solar cells is a very promising approach to realize dramatic reduction in cell cost. However, the ultrathin c-Si requires highly effective light trapping to compensate optical absorption reduction. Conventional texturing in micron scale is hardly applicable to the ultrathin c-Si(More)
This paper describes a systematic comparison of the photoelectrochemical properties of mesoporous TiO(2) films prepared by the two most prevalent templating methods: The use of preformed, crystalline nanoparticles is generally considered advantageous compared to the usage of molecular precursors such as TiCl(4), since the latter requires a separate heat(More)