Doga Gürsoy

Learn More
Magnetic induction tomography (MIT) is an imaging modality that aims at mapping the distribution of the electrical conductivity inside the body. Eddy currents are induced in the body by magnetic induction and the resulting fields are measured by an array of receiver coils. In MIT, the location of the receivers affects the quality of the image(More)
Magnetic induction tomography (MIT) attempts to obtain the distribution of passive electrical properties inside the body. Eddy currents are induced in the body using an array of transmitter coils and the magnetic fields of these currents are measured by receiver coils. In clinical usage, the relative position of the coils to the body can change during data(More)
Analysis of tomographic datasets at synchrotron light sources (including X-ray transmission tomography, X-ray fluorescence microscopy and X-ray diffraction tomography) is becoming progressively more challenging due to the increasing data acquisition rates that new technologies in X-ray sources and detectors enable. The next generation of synchrotron(More)
Synchrotron (x-ray) light sources permit investigation of the structure of matter at extremely small length and time scales. Advances in detector technologies enable increasingly complex experiments and more rapid data acquisition. However, analysis of the resulting data then becomes a bottleneck—preventing near-real-time error detection or experiment(More)
Several noninvasive modalities including electrical impedance tomography (EIT), magnetic induction tomography (MIT), and induced-current EIT (ICEIT) have been developed for imaging the electrical conductivity distribution within a human body. Although these modalities differ in how the excitation and detection circuitry (electrodes or coils) are(More)
Common methods for imaging the 3D microstructure of the brain often require slicing the brain, imaging these slices, and stitching the images back together. In contrast, X-rays allow access into centimeter-thick samples without sectioning, providing an unique and largely untapped approach for producing large 3D mesoscale brain maps. Here we demonstrate the(More)
Imaging methods used in modern neuroscience experiments are quickly producing large amounts of data capable of providing increasing amounts of knowledge about neuroanatomy and function. A great deal of information in these datasets is relatively unexplored and untapped. One of the bottlenecks in knowledge extraction is that often there is no feedback loop(More)
—The spatial resolution of the reconstructed images in Electrical impedance tomography (EIT) is low and a priori information regarding smooth conductivity changes limits reconstruction of sharp images while it is preferred in order to differentiate tissue boundaries in medical imaging. Measurement errors are another barrier that hinder a good image(More)
Magnetic induction tomography (MIT) is a contactless, inexpensive and non-invasive technique for imaging the conductivity distribution inside volume conductors. Time-difference imaging can be used for the monitoring of patients in critical care. This includes monitoring of cerebral strokes and breathing, as well as continuous screening of edema. However,(More)
Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to(More)
  • 1