Doga Gürsoy

Learn More
Analysis of tomographic datasets at synchrotron light sources (including X-ray transmission tomography, X-ray fluorescence microscopy and X-ray diffraction tomography) is becoming progressively more challenging due to the increasing data acquisition rates that new technologies in X-ray sources and detectors enable. The next generation of synchrotron(More)
Magnetic induction tomography (MIT) attempts to obtain the distribution of passive electrical properties inside the body. Eddy currents are induced in the body using an array of transmitter coils and the magnetic fields of these currents are measured by receiver coils. In clinical usage, the relative position of the coils to the body can change during data(More)
Magnetic induction tomography (MIT) is an imaging modality that aims at mapping the distribution of the electrical conductivity inside the body. Eddy currents are induced in the body by magnetic induction and the resulting fields are measured by an array of receiver coils. In MIT, the location of the receivers affects the quality of the image(More)
Synchrotron (x-ray) light sources permit investigation of the structure of matter at extremely small length and time scales. Advances in detector technologies enable increasingly complex experiments and more rapid data acquisition. However, analysis of the resulting data then becomes a bottleneck—preventing near-real-time error detection or experiment(More)
Several noninvasive modalities including electrical impedance tomography (EIT), magnetic induction tomography (MIT), and induced-current EIT (ICEIT) have been developed for imaging the electrical conductivity distribution within a human body. Although these modalities differ in how the excitation and detection circuitry (electrodes or coils) are(More)
Magnetic induction tomography (MIT) is a low resolution imaging modality and attempts to reconstruct the interior conductivity distribution of the body. In MIT, the transmitter coils induce eddy currents in the body and the response field caused by the conductivity perturbations is sensed by an array of receiver coils. All the applications that were offered(More)
Common methods for imaging the 3D microstructure of the brain often require slicing the brain, imaging these slices, and stitching the images back together. In contrast, X-rays allow access into centimeter-thick samples without sectioning, providing an unique and largely untapped approach for producing large 3D mesoscale brain maps. Here we demonstrate the(More)
The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the(More)
BACKGROUND Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the(More)