Learn More
2؉ transport in remodeled human atrium, but appropriate models are limited. Objective: To study AF, we developed a new human atrial action potential (AP) model, derived from atrial experimental results and our human ventricular myocyte model. to mimic Kv1.5 loss-of-function increased [Ca 2؉ ] i and caused early afterdepolarizations under adrenergic stress,(More)
Large-conductance, calcium- and voltage-gated potassium (BK) channels play an important role in cellular excitability by controlling membrane potential and calcium influx. The stress axis regulated exon (STREX) at splice site 2 inverts BK channel regulation by protein kinase A (PKA) from stimulatory to inhibitory. Here we show that palmitoylation of STREX(More)
BACKGROUND Although downregulation of L-type Ca2+ current (I(Ca,L)) in chronic atrial fibrillation (AF) is an important determinant of electrical remodeling, the molecular mechanisms are not fully understood. Here, we tested whether reduced I(Ca,L) in AF is associated with alterations in phosphorylation-dependent channel regulation. METHODS AND RESULTS We(More)
BACKGROUND Clinical and experimental evidence suggest that the parasympathetic nervous system is involved in the pathogenesis of atrial fibrillation (AF). However, it is unclear whether changes in G-protein-coupled inward rectifying K(+) current (I(K,ACh)) contribute to chronic AF. METHODS AND RESULTS In the present study, we used electrophysiological(More)
BACKGROUND Ca2+ leak from the sarcoplasmic reticulum (SR) may play an important role in triggering and/or maintaining atrial arrhythmias, including atrial fibrillation (AF). Protein kinase A (PKA) hyperphosphorylation of the cardiac ryanodine receptor (RyR2) resulting in dissociation of the channel-stabilizing subunit calstabin2 (FK506-binding protein or(More)
Inadequacies in current therapies for atrial fibrillation have made new drug development crucial. Conventional antiarrhythmic drugs increase the risk of ventricular proarrhythmia. In drug development, the focus has been on favourable multichannel-blocking profiles, atrial-specific ion-channels, and novel non-channel targets (upstream therapy). Molecular(More)
1. The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to omega-conotoxin GVIA(More)
Cardiac ryanodine receptor type 2 plays a key role in excitation-contraction coupling. The ryanodine receptor type 2 channel protein is modulated by various post-translational modifications, including phosphorylation by protein kinase A and Ca(2+)/calmodulin protein kinase II. Despite extensive research in this area, the functional effects of ryanodine(More)
AIMS Phosphatase inhibitor-1 (I-1) is a conditional amplifier of beta-adrenergic signalling downstream of protein kinase A by inhibiting type-1 phosphatases only in its PKA-phosphorylated form. I-1 is downregulated in failing hearts and thus contributes to beta-adrenergic desensitization. It is unclear whether this should be viewed as a predominantly(More)