Do Won Hwang

Learn More
MOTIVATION Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS We present an improved version of EVpedia, a public database for(More)
Temporal lobe epilepsy is associated with dysfunctional brain networks. Here we investigated metabolic connectivity in the pilocarpine-induced epilepsy rat model and applied a new multiscale framework to the analysis of metabolic networks of small-animal brains. [(18)F]fluorodeoxyglucose PET was acquired in pilocarpine-induced chronic epilepsy rats and(More)
MicroRNAs are small noncoding RNAs regulating gene expression, through base paring with their target mRNAs, which have been actively investigated as key regulators in a wide range of biological processes. Conventional methods such as Northern blot are generally time-consuming, non-repeatable, and cannot be applied in vivo due to the requirement for cell(More)
INTRODUCTION Metabotropic glutamate receptor 5 (mGluR5) that regulates glutamatergic neurotransmission contributes to pathophysiology of epilepsy. In this study, we monitored the changes of mGluR5 in vivo using [11C]ABP688 PET during the epileptogenesis in a pilocarpine-induced epilepsy rat model. METHODS In vivo mGluR5 images were acquired using(More)
Stem cell-based treatment of traumatic brain injury has been limited in its capacity to bring about complete functional recovery, because of the poor survival rate of the implanted stem cells. It is known that biocompatible biomaterials play a critical role in enhancing survival and proliferation of transplanted stem cells via provision of mechanical(More)
Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived(More)
Neuroimaging has been used to examine developmental changes of the brain. While PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-distance connections with higher energy efficiency during maturation. Metabolism(More)
In the field of nanomedicine, long term accumulation of nanoparticles (NPs) in the mononuclear phagocyte system (MPS) such as liver is the major hurdle in clinical translation. On the other hand, NPs could be excreted via hepatobiliary excretion pathway without overt tissue toxicity. Therefore, it is critical to develop NPs that show favorable excretion(More)
Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo,(More)
MicroRNAs (miRNAs) fine-tune target protein synthesis by suppressing gene expression, temporally changing along development and possibly in pathological conditions. A method to monitor the action of miRNAs in vivo shall help understand their dynamic behavior during development. In this study, we established a transgenic mouse harboring miR-124 responsive(More)