Dmytro Starenki

Learn More
Understanding the detailed mechanisms of a chemotherapeutic agent action on cancer cells is essential for planning the clinical applications because drug effects are often tissue and cell type specific. This study set out to elucidate the molecular pathways of Taxol effects in human anaplastic thyroid cancer cells using as an experimental model four cell(More)
Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET) proto-oncogene. For therapy of advanced MTC, the Food and Drug Administration recently approved vandetanib and cabozantinib, the tyrosine kinase inhibitors targeting RET, vascular endothelial growth factor receptor, epidermal(More)
Neuroendocrine (NE) phenotypes characterize a spectrum of lung tumors, including low-grade typical and intermediate-grade atypical carcinoid, high-grade large-cell NE carcinoma and small cell lung carcinoma. Currently, no effective treatments are available to cure NE lung tumors, demanding identification of biological features specific to these tumors.(More)
Medullary thyroid carcinoma (MTC), which originates from thyroid parafollicular C cells, accounts for 3 to 5% of thyroid malignancies. MTC occurs either sporadically or in an inherited autosomal dominant manner. Hereditary MTC occurs as a familial MTC or as a part of multiple endocrine neoplasia (MEN) type 2A and B syndromes. A strong genotype-phenotype(More)
AIM To study the effects of Paclitaxel (Ptx), γ-irradiation (IR) and their combination on the growth of xenografted tumors derived from undifferentiated thyroid cancer cells. MATERIALS AND METHODS Experiments were performed in nude mice with tumors developing from implanted undifferentiated thyroid carcinoma cells (FRO). Animals were treated with Ptx i.p.(More)
BACKGROUND Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET) proto-oncogene. Not all patients with progressive MTC respond to current therapy inhibiting RET, demanding additional therapeutic strategies. We recently demonstrated that disrupting mitochondrial metabolism using a(More)
Neuroendocrine (NE) lung tumors comprise 20–25 % of all invasive lung malignancies. Currently, no effective treatments are available to cure these tumors, and it is necessary to identify a molecular alteration(s) that characterizes NE lung tumor cells. We aimed to identify a kinase mutation(s) associated with NE lung tumor by screening 517 kinase-encoding(More)
  • 1