#### Filter Results:

- Full text PDF available (3)

#### Publication Year

2013

2017

- This year (1)
- Last 5 years (6)
- Last 10 years (6)

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Dmitry V. Gribanov, Dmitriy S. Malyshev
- Discrete Applied Mathematics
- 2017

Let A be an m × n integral matrix of rank n. We say that A has bounded minors if the maximum of the absolute values of the n × n minors is at most k, where k is a some natural constant. We will call that matrices like k-modular. We investigate an integer program max{cx : Ax ≤ b, x ∈ Z n } where A is k-modular. We say that A is almost unimodular (see [2, 5])… (More)

- Dmitry V. Gribanov, Sergey I. Veselov
- Optimization Letters
- 2016

Let A be an (m × n) integral matrix, and let P = {x : Ax ≤ b} be an n-dimensional polytope. The width of P is defined as w(P) = min{x ∈ Z n \ {0} : max x∈P x ⊤ u − min x∈P x ⊤ v}. Let ∆(A) and δ(A) denote the greatest and the smallest absolute values of a determinant among all r(A) × r(A) sub-matrices of A, where r(A) is the rank of a matrix A. We prove… (More)

- Dmitry V. Gribanov, Sergey I. Veselov
- ArXiv
- 2015

- Dmitry V. Gribanov, Aleksandr Yu. Chirkov
- Optimization Letters
- 2016

- Panos M. Pardalos, Dmitriy Malyshev, +17 authors Petr Koldanov
- 2015

- ‹
- 1
- ›