Dmitry Chistikov

Learn More
#SMT, or model counting for logical theories, is a well-known hard problem that generalizes such tasks as counting the number of satisfying assignments to a Boolean formula and computing the volume of a polytope. In the realm of satisfiability modulo theories (SMT) there is a growing need for model counting solvers, coming from several application domains(More)
We study the computational and descriptional complexity of the following transformation: Given a one-counter automaton (OCA) A, construct a nondeterministic finite automaton (NFA) B that recognizes an abstraction of the language L(A): its (1) downward closure, (2) upward closure, or (3) Parikh image. For the Parikh image over a fixed alphabet and for the(More)
Semi-linear sets, which are finitely generated subsets of the monoid (Z,+), have numerous applications in theoretical computer science. Although semi-linear sets are usually given implicitly, by formulas in Presburger arithmetic or by other means, the effect of Boolean operations on semi-linear sets in terms of the size of generators has primarily been(More)
We study the computational complexity of reachability, coverability and inclusion for extensions of context-free commutative grammars with integer counters and reset operations on them. Those grammars can alternatively be viewed as an extension of communication-free Petri nets. Our main results are that reachability and coverability are inter-reducible and(More)
Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative n × m matrix M into a product of a nonnegative n × d matrix W and a nonnegative d × m matrix H. Restricted NMF requires in addition that the column spaces of M and W coincide. Finding the minimal inner dimension d is known to be NP-hard, both for NMF and restricted NMF.(More)
A checking test for a monotone read-once function f depending essentially on all its n variables is a set of vectors M distinguishing f from all other monotone read-once functions of the same variables. We describe an inductive procedure for obtaining individual lower and upper bounds on the minimal number of vectors T (f) in a checking test for any(More)
Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative n×m matrix M into a product of a nonnegative n × d matrix W and a nonnegative d ×m matrix H. A longstanding open question, posed by Cohen and Rothblum in 1993, is whether a rational matrix M always has an NMF of minimal inner dimension d whose factors W and H are also(More)