Learn More
— This paper combines grasp analysis and manipulation planning techniques to perform fast grasp planning in complex scenes. In much previous work on grasping, the object being grasped is assumed to be the only object in the environment. Hence the grasp quality metrics and grasping strategies developed do not perform well when the object is close to(More)
We present the Constrained Bi-directional Rapidly-Exploring Random Tree (CBiRRT) algorithm for planning paths in configuration spaces with multiple constraints. This algorithm provides a general framework for handling a variety of constraints in manipulation planning including torque limits, constraints on the pose of an object held by a robot, and(More)
We present a manipulation planning framework that allows robots to plan in the presence of constraints on end-effector pose, as well as other common constraints. The framework has three main components: constraint representation, constraint-satisfaction strategies, and a general planning algorithm. These components come together to create an efficient and(More)
We describe the architecture, algorithms, and experiments with HERB, an autonomous mobile manipulator that performs useful manipulation tasks in the home. We present new algorithms for searching for objects, learning to navigate in cluttered dynamic indoor scenes, recognizing and registering objects accurately in high clutter using vision, manipulating(More)
We present an approach to path planning for manipulators that uses Workspace Goal Regions (WGRs) to specify goal end-effector poses. Instead of specifying a discrete set of goals in the manipulator's configuration space, we specify goals more intuitively as volumes in the manipulator's workspace. We show that WGRs provide a common framework for describing(More)
—We present the hardware design, software architecture , and core algorithms of HERB 2.0, a bimanual mobile manipulator developed at the Personal Robotics Lab at Carnegie Mellon University. We have developed HERB 2.0 to perform useful tasks for and with people in human environments. We exploit two key paradigms in human environments: that they have(More)
This paper focuses on recognition and prediction of human reaching motion in industrial manipulation tasks. Several supervised learning methods have been proposed for this purpose, but we seek a method that can build models on-the-fly and adapt to new people and new motion styles as they emerge. Thus, unlike previous work, we propose an unsupervised online(More)
We propose a framework, called Lightning, for planning paths in high-dimensional spaces that is able to learn from experience, with the aim of reducing computation time. This framework is intended for manipulation tasks that arise in applications ranging from domestic assistance to robot-assisted surgery. Our framework consists of two main modules, which(More)
In this paper we present a framework that allows a human and a robot to perform simultaneous manipulation tasks safely in close proximity. The proposed framework is based on early prediction of the human's motion. The prediction system, which builds on previous work in the area of gesture recognition, generates a prediction of human workspace occupancy by(More)
We present an autonomous multi-robot system that can collect objects from indoor environments and load them into a dishwasher rack. We discuss each component of the system in detail and highlight the perception, navigation, and manipulation algorithms employed. We present results from several public demonstrations , including one in which the system was run(More)