Dmitry Alexeev

  • Citations Per Year
Learn More
We present simulations of blood and cancer cell separation in complex microfluidic channels with subcellular resolution, demonstrating unprecedented time to solution, performing at 65.5% of the available 39.4 PetaInstructions/s in the 18, 688 nodes of the Titan supercomputer. These simulations outperform by one to three orders of magnitude the current(More)
The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium is a novel, interdisciplinary initiative comprised of experts across many fields, including genomics, data analysis, engineering, public health, and architecture. The ultimate goal of the MetaSUB Consortium is to improve city utilization and planning through(More)
The Kapitza resistance (RK) between few-layer graphene (FLG) and water was studied using molecular dynamics simulations. The RK was found to depend on the number of the layers in the FLG though, surprisingly, not on the water block thickness. This distinct size dependence is attributed to the large difference in the phonon mean free path between the FLG and(More)
Recent advances in medical research and bio-engineering have led to the development of devices capable of handling fluids and biological matter at the microscale. The operating conditions of medical devices are constrained to ensure that characteristic properties of blood flow, such as mechanical properties and local hemodynamics, are not altered during(More)
We study the fluid dynamics of two fish-like bodies with synchronised swimming patterns. Our studies are based on two-dimensional simulations of viscous incompressible flows. We distinguish between motion patterns that are externally imposed on the swimmers and self-propelled swimmers that learn manoeuvres to achieve certain goals. Simulations of two rigid(More)
The coordinated motion by multiple swimmers is a fundamental component in fish schooling. The flow field induced by the motion of each self-propelled swimmer implies non-linear hydrodynamic interactions among the members of a group. How do swimmers compensate for such hydrodynamic interactions in coordinated patterns? We provide an answer to this riddle(More)
  • 1