Learn More
Refractive index (RI) detection is a common technique used in chemical and biochemical analysis. It can be employed to perform universal solute detection in microHPLC and CE, as well as temperature measurements. However, accurate RI measurements in nanoliter volumes still present a significant challenge. Here we present an alternative method to extract RI(More)
The blood-brain barrier (BBB) dynamically controls exchange between the brain and the body, but this interaction cannot be studied directly in the intact human brain or sufficiently represented by animal models. Most existing in vitro BBB models do not include neurons and glia with other BBB elements and do not adequately predict drug efficacy and toxicity.(More)
The sophistication and success of recently reported microfabricated organs-on-chips and human organ constructs have made it possible to design scaled and interconnected organ systems that may significantly augment the current drug development pipeline and lead to advances in systems biology. Physiologically realistic live microHuman (μHu) and milliHuman(More)
Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules and protein, were determined with high dynamic range(More)
We have developed a novel, portable, gravity-fed, microfluidics-based platform suitable for optical interrogation of long-term organotypic cell culture. This system is designed to provide convenient control of cell maintenance, nutrients, and experimental reagent delivery to tissue-like cell densities housed in a transparent, low-volume microenvironment. To(More)
The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model(More)
Morphogenesis is a fundamental process by which new blood vessels are formed during angiogenesis. The ability to control angiogenesis would lead to improvements in tissue engineering constructions; indeed, the study of angiogenesis has numerous clinical applications, for example, in the investigation of metastatic cancer, peripheral and coronary vascular(More)
Quantification of protein-protein and ligand-substrate interactions is central to understanding basic cellular function and for evaluating therapeutics. To mimic biological conditions, such studies are best executed without modifying the proteins or ligands (i.e., label-free). While tools for label-free assays exist, they have limitations making them(More)
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state.(More)