Dmitry A Glazov

  • Citations Per Year
Learn More
One of the important aspects of the animal social behavior is the laterality in perception of conspecifics. Spatial laterality in adult–infant interactions is usually revealed in primates as a cradling/holding bias in adults or nipple preference in infants. The origin and function of such biases, however, remain unclear. Here, we investigated spatial(More)
The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=-g μB s ħ(-1) with μB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus(More)
The magnetic-dipole transition probabilities between the fine-structure levels (1s22s22p) P1/2 − P3/2 for B-like ions and (1s22s2p) P1 − P2 for Be-like ions are calculated. The configuration-interaction method in the Dirac-Fock-Sturm basis is employed for the evaluation of the interelectronic-interaction correction with negative-continuum spectrum being(More)
A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the(More)
A rigorous QED evaluation of the two-photon exchange corrections to the g factor of lithiumlike ions is presented. The screened self-energy corrections are calculated for the intermediate-Z region, and its accuracy for the high-Z region is essentially improved in comparison with that of previous calculations. As a result, the theoretical accuracy of the g(More)
The finite nuclear size correction to the bound–electron g factor in hydrogenlike atoms is investigated in the range Z=1-20. An analytical formula for this correction which includes the nonrelativistic and dominant relativistic contributions is derived. In the case of the 1s state, the results obtained by this formula are compared with previous(More)
A rigorous evaluation of the two-photon exchange corrections to the hyperfine structure in lithiumlike heavy ions is presented. As a result, the theoretical accuracy of the specific difference between the hyperfine splitting values of H- and Li-like Bi ions is significantly improved. This opens a possibility for the stringent test of the many-electron QED(More)
The g factor of lithiumlike silicon (28)Si(11+) has been measured in a triple-Penning trap with a relative uncertainty of 1.1×10(-9) to be g(exp)=2.000 889 889 9(21). The theoretical prediction for this value was calculated to be g(th)=2.000 889 909(51) improving the accuracy to 2.5×10(-8) due to the first rigorous evaluation of the two-photon exchange(More)
A rigorous evaluation of the complete gauge-invariant set of the screened one-loop QED corrections to the hyperfine structure and g factor in lithiumlike heavy ions is presented. The calculations are performed in both Feynman and Coulomb gauges for the virtual photon mediating the interelectronic interaction. As a result, the most accurate theoretical(More)
Investigations of the hyperfine splitting and the g factor in highly charged ions give an access to a test of boundstate QED in strongest electromagnetic fields available at present for experimental study. To date, accurate measurements of the ground-state hyperfine structure and of the g factor were performed in H-like ions. An extention of such kind of(More)