Dmitrii I Petukhov

  • Citations Per Year
Learn More
Novel computing technologies that imitate the principles of biological neural systems may offer low power consumption along with distinct cognitive and learning advantages. The development of reliable memristive devices capable of storing multiple states of information has opened up new applications such as neuromorphic circuits and adaptive systems. At the(More)
Mass-transport properties of anodic alumina membranes exploited in a number of technological areas are strongly affected by the real pore structure and arrangement of channels that can split or terminate during the anodization process. This paper focuses on the investigation of pore branching and rearrangement caused by voltage variation in the course of(More)
A comparative study of the structure and transport properties of porous aluminum oxide films obtained by single- and two-step anodization was carried out. It is shown that the oxidation regime significantly affect the number of dead-ended channels, which results in more than twice the variation in membrane permeability. The effect is explained by multiple(More)
An experimental study on the permeability of anodic alumina (20-120 nm) and track-etched (30 nm) nanoporous membranes for different gases in the transitional flow regime is reported in the range of Knudsen numbers from 0.1 to 10. A significant variation (up to 30%) of the membrane permeance for different gases at the same Knudsen numbers is reported with(More)
A study on the chemical stability of anodic alumina membranes and their performance in long-term water and organic solvent permeation experiments is reported. Anodic alumina possesses high stability for both protonic and aprotonic organic solvents. However, serious degradation of the membrane occurs in pure water, leading to a drastic decrease of permeance(More)
New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure.(More)
  • 1