Learn More
Internal friction, which reflects the "roughness" of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of(More)
Experiments have shown that the folding rate constants of two dozen structurally unrelated, small, single-domain proteins can be expressed in terms of one quantity (the contact order) that depends exclusively on the topology of the folded state. Such dependence is unique in chemical kinetics. Here we investigate its physical origin and derive the(More)
Most small, single-domain proteins fold with the uncomplicated, single-exponential kinetics expected for diffusion on a smooth energy landscape. Despite this energetic smoothness, the folding rates of these two-state proteins span a remarkable million-fold range. Here, we review the evidence in favor of a simple, mechanistic description, the topomer search(More)
Single-molecule experiments in which proteins are unfolded by applying mechanical stretching forces generally force unfolding to proceed along a reaction coordinate that is different from that in chemical or thermal denaturation. Here we simulate the mechanical unfolding and refolding of a minimalist off-lattice model of the protein ubiquitin to explore in(More)
Single-molecule studies in which a mechanical force is transmitted to the molecule of interest and the molecular extension or position is monitored as a function of time are versatile tools for probing the dynamics of protein folding, stepping of molecular motors, and other biomolecular processes involving activated barrier crossing. One complication in(More)
We consider the mechanical stretching of a polypeptide chain formed by multiple interacting repeats. The folding thermodynamics and the interactions among the repeats are described by the Ising model. Unfolded repeats act as soft entropic springs, whereas folded repeats respond to a force as stiffer springs. We show that the resulting force-extension curve(More)
We develop a mechanochemical model for the dynamics of cellulase, a two-domain enzyme connected by a peptide linker, as it extracts and hydrolyzes a cellulose polymer from a crystalline substrate. We consider two random walkers, representing the catalytic domain (CD) and the carbohydrate binding module (CBM), whose rates for stepping are biased by the(More)
Motivated by the recent experimental atomic force microscopy (AFM) measurements of the mechanical unfolding of proteins pulled in different directions [D. J. Brockwell et al., Nat. Struct. Biol. 10, 731 (2003); M. Carrion-Vazquez et al., ibid 10, 738 (2003)] we have computed the unfolding free energy profiles for the ubiquitin domain when it is stretched(More)
Although recent spectroscopic studies of chemically denatured proteins hint at significant nonrandom residual structure, the results of extensive small angle X-ray scattering studies suggest random coil behavior, calling for a coherent understanding of these seemingly contradicting observations. Here, we report the results of a Monte Carlo study of the(More)
Spider capture silk is a natural material that outperforms almost any synthetic material in its combination of strength and elasticity. The structure of this remarkable material is still largely unknown, because spider-silk proteins have not been crystallized. Capture silk is the sticky spiral in the webs of orb-weaving spiders. Here we are investigating(More)