Learn More
We demonstrate that the presentation of LRP and the subsequent uptake of its ligands by malignant cells are both strongly regulated by MT1-MMP. Because LRP is essential for the clearance of multiple ligands, these findings have important implications for many pathophysiological processes including the pericellular proteolysis in neoplastic cells as well as(More)
Membrane type-1 matrix metalloproteinase (MT1-MMP) and alpha(v)beta(3) integrin are both essential to cell invasion. Maturation of integrin pro-alpha(v)chain (pro-alpha(v)) involves its cleavage by proprotein convertases (PC) to form the disulfide-bonded 125-kDa heavy and 25-kDa light alpha chains. Our report presents evidence of an alternative pathway of(More)
Neoplasms have developed numerous strategies to protect themselves against the host immune system. Membrane type-1 matrix metalloproteinase (MT1-MMP) is strongly associated with many cancer types and is up-regulated in the aggressive, metastatic neoplasms. During the past few years, there has been an increasing appreciation of the important, albeit(More)
Recently, we have shown that membrane type 1 matrix metalloproteinase (MT1-MMP) exhibits integrin convertase activity. Similar to furin-like proprotein convertases, MT1-MMP directly processes a single chain precursor of alpha(v) integrin subunit (pro-alpha(v)) into the heavy and light alpha-chains connected by a disulfide bridge. To evaluate functionality(More)
Elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) is closely associated with malignancies. There is a consensus among scientists that cell surface-associated MT1-MMP is a key player in pericellular proteolytic events. Now we have identified an intracellular, hitherto unknown, function of MT1-MMP. We demonstrated that MT1-MMP is(More)
Inhalation anthrax is a deadly disease for which there is currently no effective treatment. Bacillus anthracis lethal factor (LF) metalloproteinase is an integral component of the tripartite anthrax lethal toxin that is essential for the onset and progression of anthrax. We report here on a fragment-based approach that allowed us to develop inhibitors of(More)
Mosquito-borne WNV (West Nile virus) is an emerging global threat. The NS3 proteinase, which is essential for the proteolytic processing of the viral polyprotein precursor, is a promising drug target. We have isolated and biochemically characterized the recombinant, highly active NS3 proteinase. We have determined that the NS3 proteinase functions in a(More)
Membrane type-1 matrix metalloproteinase (MT1-MMP) degrades the extracellular matrix, initiates the activation pathway of soluble MMPs and regulates the functionality of cell adhesion signaling receptors, thus playing an important role in many cell functions. Intracellular transport mechanisms, currently incompletely understood, regulate the presentation of(More)
Understanding the function of invasion-promoting membrane type-1 matrix metalloproteinase (MT1-MMP) is of paramount importance for understanding cancer biology. MT1-MMP is synthesized in cells as a latent zymogen that requires the cleavage of its prodomain to exert the proteolytic activity. The mature alphav integrin subunit is also generated by(More)
An understanding of the regulatory mechanisms that control the activity of membrane type-1 matrix metalloproteinase (MT1-MMP), a key proteinase in tumor cell invasion, is essential for the design of potent and safe anti-cancer therapies. A unique proteolytic pathway regulates MT1-MMP at cancer cell surfaces. The abundance of proteolytic enzymes in cancer(More)