Dmitri Feldman

Learn More
The critical behavior of the random-field Ising model has long been a puzzle. Different methods predict that its critical exponents in D dimensions are the same as in the pure (D-2)-dimensional ferromagnet with the same number of the magnetization components contrary to the experiments and simulations. We calculate the exponents of the random-field O(N)(More)
We consider glass states of several disordered systems: vortices in impure superconductors, amorphous magnets, and nematic liquid crystals in random porous media. All these systems can be described by the random-field or random-anisotropy O(N) model. Even arbitrarily weak disorder destroys long range order in the O(N) model. We demonstrate that at weak(More)
We present a study of a Hanbury Brown-Twiss interferometer realized with anyons. Such a device can directly probe entanglement and fractional statistics of initially uncorrelated particles. We calculate Hanbury Brown-Twiss cross correlations of Abelian Laughlin anyons. The correlations we calculate exhibit partial bunching similar to bosons, indicating a(More)
Edges of some quantum Hall liquids and a number of other systems exhibit chiral transport: excitations can propagate in one direction only, e.g., clockwise. We derive a family of fluctuation-dissipation relations in nonequilibrium steady states of such chiral systems. The theorems connect nonlinear response with fluctuations far from thermal equilibrium and(More)
We consider cold polar molecules confined in a helical optical lattice similar to those used in holographic microfabrication. An external electric field polarizes molecules along the axis of the helix. The large-distance intermolecular dipolar interaction is attractive but the short-scale interaction is repulsive due to geometric constraints and thus(More)
  • 1