Learn More
The 5'-cap and the poly(A) tail act synergistically to increase the translational efficiency of eukaryotic mRNAs, which suggests that these two mRNA elements communicate during translation. We report here that the cap-associated eukaryotic initiation factors (eIFs), i. e. the two isoforms of the cap-binding complex (eIF-4F and eIF-iso4F) and eIF-4B, bind to(More)
Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of(More)
In eukaryotes, a key step in the initiation of translation is the binding of the eukaryotic initiation factor 4E (eIF4E) to the cap structure of the mRNA. Subsequent recruitment of several components, including the small ribosomal subunit, is thought to allow migration of initiation complexes and recognition of the initiation codon. Mitogens and cytokines(More)
In the initiation of protein synthesis, the mRNA 5'-terminal 7-methylguanosine cap structure and several recognition proteins play a pivotal role. For the study of this cap binding reaction, one approach is to use fluorescence spectroscopy. A ribose diol-modified fluorescent cap analog, anthraniloyl-m7GTP (Ant-m7GTP), was designed and synthesized for this(More)
Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that(More)
23 (ref. 26). 30 Dor is 200 times larger and 100–1,000 times less dense than the supernebula in NGC5253, and its exciting star cluster R136 is 10–100 times less massive than the cluster in NGC5253 (ref. 27). The escape velocity for 30 Dor is less than the thermal sound speed of 10 km s 21 so its gas motions are determined by winds and turbulence rather than(More)
We have determined the equilibrium constants for the binding of AEDANS-labelled S1 to S1-depleted 30S and 70S ribosomes. For "tight" ribosomes, the association of S1 increases with the sixth power of Mg2+ concentration, but for 30S subunits and "loose" ribosomes, there is virtually no dependence of the association on Mg2+ over the same concentration range,(More)
  • 1