Dixie J. Goss

Learn More
The 5'-cap and the poly(A) tail act synergistically to increase the translational efficiency of eukaryotic mRNAs, which suggests that these two mRNA elements communicate during translation. We report here that the cap-associated eukaryotic initiation factors (eIFs), i. e. the two isoforms of the cap-binding complex (eIF-4F and eIF-iso4F) and eIF-4B, bind to(More)
In eukaryotes, a key step in the initiation of translation is the binding of the eukaryotic initiation factor 4E (eIF4E) to the cap structure of the mRNA. Subsequent recruitment of several components, including the small ribosomal subunit, is thought to allow migration of initiation complexes and recognition of the initiation codon. Mitogens and cytokines(More)
The interaction between VPg of turnip mosaic virus and wheat germ eukaryotic translation initiation factors eIFiso4E and eIFiso4F (the complex of eIFiso4E and eIFiso4G) were measured and compared. The fluorescence quenching data showed the presence of one binding site on eIFiso4E for VPg. Scatchard analysis revealed the binding affinity (K(a)) and average(More)
Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of(More)
Cap-binding proteins specifically bind to the 7-methyl guanosine (m7G) functional group at the 5' end of eukaryotic mRNAs. A novel Arabidopsis thaliana protein has been identified that has sequence similarity to cap-binding proteins but is clearly a different form of the protein. The most obvious primary sequence difference is the substitution of two of the(More)
The binding of analogues of the 7-methylguanosine-containing cap, m7GTP and m7GpppG, to eIF-4E from human erythrocytes as a function of pH, temperature, and ionic strength is described. From the pH-dependent binding of m7GTP and m7GpppG to eIF-4E, a new model describing the nature of the cap.eIF-4E interaction is proposed. The thermodynamic values and ionic(More)
Potyvirus genome linked protein, VPg, interacts with translation initiation factors eIF4E and eIFiso4E, but its role in protein synthesis has not been elucidated. We show that addition of VPg to wheat germ extract leads to enhancement of uncapped viral mRNA translation and inhibition of capped viral mRNA translation. This provides a significant competitive(More)
Among the best characterized of the transcription factors are the b/HLH/z proteins: USF, Max, Myc, and Mad. These proteins bind to the DNA E-box, a six base pair sequence, CACGTG. Max and Myc form a heterodimer that has strong oncogenic potential but can also repress transcription, while Mad and Max form a heterodimer that acts as a transcription repressor.(More)
Most eukaryotic mRNAs contain a 5' cap (m7GppX) and a 3' poly(A) tail to increase synergistically the translational efficiency. Recently, the poly(A) binding protein (PABP) and cap-binding protein, eIF-4F, were found to interact [Le et al. (1997) J. Biol. Chem. 272, 16247-16255; Tarun and Sachs (1996) EMBO J. 15, 7168-7177]. These data suggest that PABP may(More)
Eukaryotic translation initiation factor eIF-4E plays a central role in the recognition of the 7-methylguanosine-containing cap structure of mRNA and the formation of initiation complexes during protein synthesis. eIF-4E exists in both phosphorylated and nonphosphorylated forms, and the primary site of phosphorylation has been identified. Previous studies(More)