Divya D. A. Raj

Learn More
Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred(More)
INTRODUCTION Microglia are tissue macrophages of the central nervous system that monitor brain homeostasis and react upon neuronal damage and stress. Aging and neurodegeneration induce a hypersensitive, pro-inflammatory phenotype, referred to as primed microglia. To determine the gene expression signature of priming, the transcriptomes of microglia in(More)
Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as 'priming'. To date,(More)
The present study describes for the first time the neural expression and distribution of UGS148, a protein encoded by the RIKEN cDNA63330403K07 gene that has been shown to be prominently and characteristically expressed in neural stem cells (NSCs). Based on its molecular structure, UGS148 is an intracellular protein expected to be involved in intracellular(More)
Alzheimer's disease (AD) is strongly associated with microglia-induced neuroinflammation. Particularly, Aβ plaque-associated microglia take on an "activated" morphology. However, the function and phenotype of these Aβ plaque-associated microglia are not well understood. We show hyperreactivity of Aβ plaque-associated microglia upon systemic inflammation in(More)
  • 1