Learn More
Robust synchronization (phase locking) of power plants and consumers centrally underlies the stable operation of electric power grids. Despite current attempts to control large-scale networks, even their uncontrolled collective dynamics is not fully understood. Here we analyze conditions enabling self-organized synchronization in oscillator networks that(More)
Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular,(More)
We discuss a new method for realizing number-resolving and non-demolition photo detectors by strong coupling of light to individual single photon emitters, which act as strong optical non-linearities. As a specific application we show how these elements can be integrated into an error-proof Bell state analyzer, whose efficiency exceeds the best possible(More)
We discuss the scattering of photons from a three-level emitter in a one-dimensional waveguide, where the transport is governed by the interference of spontaneously emitted and directly transmitted waves. The scattering problem is solved in closed form for different level structures. Several possible applications are discussed: the state of the emitter can(More)
The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on(More)
We study the propagation of cascading failures in complex supply networks with a focus on nonlocal effects occurring far away from the initial failure. It is shown that a high clustering and a small average path length of a network generally suppress nonlocal overloads. These properties are typical for many real-world networks, often called small-world(More)
—Power Transfer Distribution Factors (PTDFs) play a crucial role in power grid security analysis, planning, and redispatch. Fast calculation of the PTDFs is therefore of great importance. In this letter, we present a dual method of computing PTDFs. It uses power flows along topological cycles of the network but still relies on simple matrix algebra. For(More)
Ziel: Empirische Grundlagen bereit zu stellen um näherungsweise den gegenwärtigen Problem-und Kenntnisstand vor Augen zu haben. Grundlagen zur Verfügung zu stellen für eine " Awareness-Kampagne " und Anregungen zu geben, so dass im Museumsbereich über Strategien nachgedacht wird und dass erkennbar ist, dass deren Notwendigkeit noch zunehmen wird.
—A new graph dual formalism is presented for the analysis of line outages in electricity networks. The dual formalism is based on a consideration of the flows around closed cycles in the network. A new formula for the computation of Line Outage Distribution Factors (LODFs) is derived, which is not only computationally faster than existing methods, but also(More)