Learn More
The perceived and remembered position of stationary target objects is subject to a large number of distortions. Objects are localized toward the fovea, and when an additional object (distractor) is presented, a tendency to average target and distractor position was observed. These distortions in visual short-term memory have been referred to as foveal bias(More)
Moving objects change their position until signals from the photoreceptors arrive in the visual cortex. Nonetheless, motor responses to moving objects are accurate and do not lag behind the real-world position. The questions are how and where neural delays are compensated for. It was suggested that compensation is achieved within the visual system by(More)
Observers' judgments of the final position of a moving target are typically shifted in the direction of implied motion ("representational momentum"). The role of attention is unclear: visual attention may be necessary to maintain or halt target displacement. When attention was captured by irrelevant distractors presented during the retention interval,(More)
Some accounts hold that the position of moving objects is extrapolated either in visual perception or visual short-term memory ("representational momentum"). However, some studies did not find forward displacement of the final position when smooth motion was used, whereas reliable displacement was observed with implied motion. To resolve this conflict, the(More)
When observers are asked to localize the final position of a moving target, the judged position is usually displaced from the actual position. It has been suggested that mental processes derived from a number of invariant and noninvariant principles produce the mislocalization in memory. In this study, the effects of velocity, expectation, friction, memory(More)
In the Simon effect, responses to a non-spatial attribute are faster when the irrelevant spatial position of the stimulus corresponds to the position of the response. It was suggested that there are two distinct mechanisms involved in the Simon effect. In the visuomotor Simon effect, the stimulus transiently activates the corresponding response which(More)
Attentional capture by salient distractors has been confirmed by the occurrence of an N2pc to the salient distractor. To clarify some failures to replicate this finding, we varied target predictability to induce different search modes. In the unpredictable target condition, the target shape varied randomly from trial to trial, favoring singleton detection(More)
Improvements of perceptual performance following the presentation of peripheral cues have been ascribed to accelerated accrual of information, enhanced contrast perception, and decision bias. We investigated effects of peripheral cues on the perception of Gabor and letter stimuli. Non-predictive, peripheral cues improved perceptual accuracy when the stimuli(More)
Many observers believe that a target will continue on a curved trajectory after exiting a spiral tube. Similarly, when observers were asked to localize the final position of a target moving on a circular orbit, displacement of the judged position in the direction of forward motion ("representational momentum") and toward the center of the orbit was observed(More)