Dirk J. Beuckelmann

Learn More
BACKGROUND Recordings of outward currents in human ventricular myocytes revealed the presence of a large calcium-insensitive transient outward current. This current has been suggested to contribute significantly to regional electrophysiological heterogeneity in myocardial cells and tissue of several animal species and to cause electrical gradients across(More)
Patients with severe heart failure are at high risk of sudden cardiac death. In the majority of these patients, sudden cardiac death is thought to be due to ventricular tachyarrhythmias. Alterations of the electric properties of single myocytes in heart failure may favor the occurrence of ventricular arrhythmias in these patients by inducing early or(More)
Prolongation of the action potential has been postulated to be a major reason for the altered diastolic relaxation of the heart in patients with severe heart failure. To investigate the electrophysiological basis for this action potential prolongation in terminal heart failure, K+ currents were recorded in single ventricular myocytes isolated from 16(More)
BACKGROUND Experiments were performed in human ventricular myocytes to investigate properties of excitation-contraction coupling in patients with terminal heart failure. Myocytes were isolated from left ventricular myocardium of patients with cardiac failure caused by dilated or ischemic cardiomyopathy undergoing transplantation. These results were compared(More)
BACKGROUND The role of the L-type calcium channel in human heart failure is unclear, on the basis of previous whole-cell recordings. METHODS AND RESULTS We investigated the properties of L-type calcium channels in left ventricular myocytes isolated from nonfailing donor hearts (n= 16 cells) or failing hearts of transplant recipients with dilated (n=9) or(More)
BACKGROUND Despite advances in medical therapy, congestive heart failure remains a major cause of death in the developed world. A disproportionate number of the deaths of patients with heart failure are sudden and presumed to be arrhythmic. Heart failure in humans and in animal models is associated with prolongation of the action potential duration (APD),(More)
1. The mechanisms that control release of Ca2+ from the sarcoplasmic reticulum (SR) of guinea-pig ventricular cells were studied by observing intracellular calcium concentration ([Ca2+]i transients) and membrane currents in voltage-clamped guinea-pig ventricular myocytes perfused internally with Fura-2. 2. Sarcolemmal Ca2+ current was identified through the(More)
1. Membrane currents and changes in [Ca2+]i attributable to the operation of an electrogenic Na-Ca exchange mechanism were recorded in single isolated guinea-pig ventricular myocytes under voltage clamp and internal perfusion with the Ca2+ indicator Fura-2. 2. Ionic currents that interfere with the measurement of Na-Ca exchange current were blocked through(More)
Cardiac beta-adrenoceptors and the positive inotropic effects of adenylate cyclase-dependent (dobutamine, histamine, forskolin) and adenylate cyclase-independent agents (isobutylmethylxanthine (IBMX), dibutyryl-cAMP (db-cAMP), digoxin, digitoxin and calcium were measured in papillary muscle strips from severely failing (NYHA IV), moderately failing (NYHA(More)
BACKGROUND The hyperpolarization-activated inward current (I[f]) was found to be overexpressed in hypertrophied rat ventricular myocytes, indicating that I(f) might favor arrhythmias in hypertrophied or failing ventricular myocardium. In the present study, we evaluated whether I(f) is expressed in human ventricular myocardium, if it may be increased in(More)