Learn More
Vesicular release of neurotransmitter is the universal output signal of neurons in the brain. It is generally believed that fast transmitter release is restricted to nerve terminals that contact postsynaptic cells in the gray matter. Here we show in the rat brain that the neurotransmitter glutamate is also released at discrete sites along axons in white(More)
NG2-expressing glia (NG2 cells, polydendrocytes) appear in the embryonic brain, expand perinatally, and persist widely throughout the gray and white matter of the mature central nervous system. We have previously reported that NG2 cells generate oligodendrocytes in both gray and white matter and a subset of protoplasmic astrocytes in the gray matter of the(More)
Ca2+ influx into presynaptic terminals via voltage-dependent Ca2+ channels triggers fast neurotransmitter release as well as different forms of synaptic plasticity. Using electrophysiological and genetic techniques we demonstrate that presynaptic Ca2+ entry through Cav2.3 subunits contributes to the induction of mossy fiber LTP and posttetanic potentiation(More)
Ca 2ϩ-binding proteins are ubiquitously expressed throughout the CNS and serve as valuable immunohistochemical markers for certain types of neurons. However, the functional role of most Ca 2ϩ-binding proteins has to date remained obscure because their concentration in central neurons is not known. In this study, we investigate the intracellular(More)
In postnatal rodent brain, certain NG2-expressing oligodendroglial precursor cells (OPCs) are contacted by synaptic terminals from local neurons. However, it has remained elusive whether and when NG2(+) cells are integrated into neuronal circuits. Here we use patch-clamp recordings from mitotic cells in murine brain slices to show that, unlike any other(More)
NG2-expressing oligodendrocyte precursor cells (OPCs) are ubiquitous and generate oligodendrocytes throughout the young and adult brain. Previous work has shown that virtually every NG2 cell receives synaptic input from many axons, but the meaning of this signaling is not understood. In particular, it is unclear whether neurons specifically synapse onto(More)
The development of resistance to pharmacological treatment is common to many human diseases. In chronic epilepsy, many patients develop resistance to anticonvulsant drug treatment during the course of their disease, with the underlying mechanisms remaining unclear. We have studied cellular mechanisms underlying drug resistance in resected hippocampal tissue(More)
Activation of presynaptic metabotropic glutamate receptors (mGluRs) leads to a powerful inhibition of glutamate release from many synaptic terminals throughout the CNS. mGluRs as autoreceptors are believed to provide a negative feedback system that prevents potentially toxic accumulation of glutamate in the extracellular space during synchronous synaptic(More)
AMPA-receptor (AMPA-R) currents were recorded from CA1 pyramidal neurons in situ and after acute isolation from the hippocampus of 3- to 45-day-old rats. Membrane currents were analyzed by combining the patch clamp method with fast application techniques. The complete block of receptor currents by GYKI 53655 and the absence of modulation by Concanavalin A(More)
Metabotropic glutamate receptors (mGluRs) have emerged as an interesting family of eight different receptor subtypes that can be divided into three groups according to their pharmacology and sequence similarity. In the present study, the specific mGluR agonists (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD) and(More)