Dirk D Dolle

Learn More
Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of(More)
The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding(More)
We present here a Sleeping Beauty-based transposition system that offers a simple and efficient way to investigate the regulatory architecture of mammalian chromosomes in vivo. With this system, we generated several hundred mice and embryos, each with a regulatory sensor inserted at a random genomic position. This large sampling of the genome revealed the(More)
Most organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or "entrained" by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the(More)
Niemann-Pick type C (NPC) disease is a rare autosomal-recessive lysosomal storage disease typically accompanied by progressive impairment of nervous system and liver function. Biochemically, the disorder presents with an inhibited egress of cholesterol and glycosphingolipids from endosomal and lysosomal compartments in neuronal and nonneuronal cells. In the(More)
Oryzias latipes (medaka) has been established as a vertebrate genetic model for more than a century and recently has been rediscovered outside its native Japan. The power of new sequencing methods now makes it possible to reinvigorate medaka genetics, in particular by establishing a near-isogenic panel derived from a single wild population. Here we(More)
Enhancers have been described to evolve by permutation without changing function. This has posed the problem of how to predict enhancer elements that are hidden from alignment-based approaches due to the loss of co-linearity. Alignment-free algorithms have been proposed as one possible solution. However, this approach is hampered by several problems(More)
We are rapidly approaching the point where we have sequenced millions of human genomes. There is a pressing need for new data structures to store raw sequencing data and efficient algorithms for population scale analysis. Current reference-based data formats do not fully exploit the redundancy in population sequencing nor take advantage of shared genetic(More)
  • 1