Dipti Sareen

  • Citations Per Year
Learn More
Epoxide hydrolases (EHs), are enantioselective enzymes as they catalyze the kinetic resolution of racemic epoxides into the corresponding enantiopure vicinal diols, which are useful precursors in the synthesis of chiral pharmaceutical compounds. Here, we have identified and cloned two putative epoxide hydrolase genes (cpeh and sneh) from marine bacteria,(More)
BACKGROUND Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food(More)
A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had(More)
Epoxide hydrolases (EHs) from microbial sources have recently been recognized as a versatile biocatalytic tool for the synthesis of enantiomerically pure epoxides and vicinal diols. Keeping in mind the potential of these compounds in pharmaceutical, agrochemical and flavour industries, a range of epoxide substrates have been analyzed using epoxide hydrolase(More)
An electrochemical DNA aptasensor for the detection of Mycobacterium tuberculosis (M. tb) antigen MPT64, was developed using Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes (CNTs). The biotinylated aptamer was immobilized onto streptavidin attached to -COOH functionalized CNTs via streptavidin-biotin interaction. Various(More)
Epoxide hydrolases (EHs; 3.3.2.x) catalyze the enantioselective ring opening of racemic epoxides to the corresponding enantiopure vicinal diols and remaining equivalent unreacted epoxides. These epoxides and diols are used for the synthesis of chiral drug intermediates. With an upsurge in the methods for identification of novel microbial EHs, a lot of EHs(More)
Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are the major multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically important antibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid, followed by their(More)
In order to produce enantiomerically pure epoxides for the synthesis of value-added chemicals, a novel putative epoxide hydrolase (EH) sgeh was cloned and overexpressed in pET28a/Escherichia coli BL21(DE3). The 1047 bp sgeh gene was mined from Streptomyces griseus NBRC 13350 genome sequence. The recombinant hexahistidyl-tagged SGEH was purified (16.6-fold)(More)
  • 1