Dipayan Rudra

Learn More
The 138 genes encoding the 79 ribosomal proteins (RPs) of Saccharomyces cerevisiae form the tightest cluster of coordinately regulated genes in nearly all transcriptome experiments. The basis for this observation remains unknown. We now provide evidence that two factors, Fhl1p and Ifh1p, are key players in the transcription of RP genes. Both are found at(More)
Distinct classes of protective immunity are guided by activation of STAT transcription factor family members in response to environmental cues. CD4+ regulatory T cells (T(regs)) suppress excessive immune responses, and their deficiency results in a lethal, multi-organ autoimmune syndrome characterized by T helper 1 (TH1) and T helper 2 (TH2) CD4+ T(More)
It has become clear that in Saccharomyces cerevisiae the transcription of ribosomal protein genes, which makes up a major proportion of the total transcription by RNA polymerase II, is controlled by the interaction of three transcription factors, Rap1, Fhl1, and Ifh1. Of these, only Rap1 binds directly to DNA and only Ifh1 is absent when transcription is(More)
The ribosomal protein genes of Saccharomyces cerevisiae, responsible for nearly 40% of the polymerase II transcription initiation events, are characterized by the constitutive tight binding of the transcription factor Rap1. Rap1 binds at many places in the yeast genome, including glycolytic enzyme genes, the silent MAT loci, and telomeres, its specificity(More)
The transcription factor Foxp3 is indispensible for the differentiation and function of regulatory T cells (T(reg) cells). To gain insights into the molecular mechanisms of Foxp3-mediated gene expression, we purified Foxp3 complexes and explored their composition. Biochemical and mass-spectrometric analyses revealed that Foxp3 forms multiprotein complexes(More)
The transcription factor Foxp3 has an indispensable role in establishing stable transcriptional and functional programs of regulatory T cells (T(reg) cells). Loss of Foxp3 expression in mature T(reg) cells results in a failure of suppressor function, yet the molecular mechanisms that ensure steady, heritable Foxp3 expression in the T(reg) cell lineage(More)
Maintenance of lymphoid homeostasis in a number of immunological and inflammatory contexts is served by a variety of regulatory T (Treg) cell subtypes and depends on interaction of the transcription factor FoxP3 with specific transcriptional cofactors. We report that a commonly used insertional mutant of FoxP3 (GFP-Foxp3) modified its molecular(More)
Rational combinatorial therapeutic strategies have proven beneficial for the management of cancer. Recent success of checkpoint blockade in highly immunogenic tumors has renewed interest in immunotherapy. Regulatory T (T reg) cells densely populate solid tumors, which may promote progression through suppressing anti-tumor immune responses. We investigated(More)
Mice. Foxp3 , CbfbCD4 25 and Runx1 23 mice were described elsewhere. Experimental mice were age matched, housed and bred under specific pathogen-free conditions, in accordance with guidelines from the University of Washington Institutional Animal Care Committee. For bone marrow transplantation experiments, CD45.1 and Rag2 B6 mice were purchased from Jackson(More)