Dionysios Dion D Dionysiou

Learn More
Nine transition metals were tested for the activation of three oxidants and the generation of inorganic radical species such as sulfate, peroxymonosulfate, and hydroxyl radicals. From the 27 combinations, 14 M/Ox couples demonstrated significant reactivity toward transforming a model organic substrate such as 2,4-dichlorophenol and are further discussed(More)
The sulfate radical pathway of the room-temperature degradation of two phenolic compounds in water is reported in this study. The sulfate radicals were produced by the cobalt-mediated decomposition of peroxymonosulfate (Oxone) in an aqueous homogeneous system. The major intermediates formed from the transformation of 2,4-dichlorophenol were(More)
Sources of mercury contamination in aquatic systems were studied in a comprehensive literature review. The results show that the most important anthropogenic sources of mercury pollution in aquatic systems are: (1) atmospheric deposition, (2) erosion, (3) urban discharges, (4) agricultural materials, (5) mining, and (6) combustion and industrial discharges.(More)
Recent industrial and urban activities have led to elevated concentrations of a wide range of contaminants in groundwater and wastewater, which affect the health of millions of people worldwide. In recent years, the use of zero-valent iron (ZVI) for the treatment of toxic contaminants in groundwater and wastewater has received wide attention and encouraging(More)
There has been considerable interest in the use of persulfate for in situ chemical oxidation of organic contaminants in soils, sediments, and groundwater. Since humic acid (HA) exists ubiquitously in these environmental compartments, its redox active functional moieties, such as quinones, may play an important role in the oxidation processes of persulfate(More)
Microcystin-LR (MC-LR), a cyanotoxin and emerging drinking water contaminant, was treated with TiO(2) photocatalysts immobilized on stainless steel plates as an alternative to nanoparticles in slurry. The reaction intermediates of MC-LR were identified with mass spectrometry (MS) at pH of Milli-Q water (pH(sq)=5.7). Eleven new [M+H](+) were observed in the(More)
Mass spectrometry was utilized for structural identification of the intermediates formed during the photocatalytic degradation of the cyanotoxin, microcystin-LR with immobilized TiO2 photocatalysts at neutral pH. Most of the intermediates reported herein have not been found in prior studies. Results indicate that MC-LR degradation is initiated at four sites(More)
Prior studies have shown the effectiveness of Fenton reagent (FR) for degrading low concentrations (1.0-2.0mg/L) of methyl tert-butyl ether (MTBE), similar to those found in contaminated groundwater. The present study investigates the effect of increasing FR doses on the extent of degradation and mineralization of a given initial MTBE concentration. The FR(More)
In recent years, the area of developing visible-light-active photocatalysts based on titanium dioxide has been enormously investigated due to its wide range of applications in energy and environment related fields. Various strategies have been designed to efficiently utilize the solar radiation and to enhance the efficiency of photocatalytic processes.(More)
Increasing attention has been paid to magnetite nanoparticles (MNPs) due to their highly reductive reactivity toward environmental contaminants. However, there is little information related to the generation of reactive oxygen species (ROS) by MNPs, which in fact plays a vital role for the transformation of contaminants. In this paper, the degradation of(More)