Dione T. Kobayashi

Learn More
OBJECTIVES Spinal Muscular Atrophy (SMA) presents challenges in (i) monitoring disease activity and predicting progression, (ii) designing trials that allow rapid assessment of candidate therapies, and (iii) understanding molecular causes and consequences of the disease. Validated biomarkers of SMA motor and non-motor function would offer utility in(More)
Alzheimer's disease (AD) is the most common neurodegenerative affliction of the elderly, presenting with progressive memory loss and dementia and terminating with death. There have been significant advances in understanding the biology and subsequent diagnosis of AD; however, the furious pace of research has not yet translated into a disease-modifying(More)
Accumulation of cerebral amyloid-beta (Abeta) has been implicated as a putative causal factor in the development of Alzheimer's disease (AD). Transgenic mice like the PDAPP line overexpress human mutant Amyloid Precursor Protein (hAPP) and recapitulate many features of AD, including amyloid neuropathology and cognitive deficits. Inhibition of the beta-site(More)
BACKGROUND The universal presence of a gene (SMN2) nearly identical to the mutated SMN1 gene responsible for Spinal Muscular Atrophy (SMA) has proved an enticing incentive to therapeutics development. Early disappointments from putative SMN-enhancing agent clinical trials have increased interest in improving the assessment of SMN expression in blood as an(More)
Two experiments were conducted to investigate the possibility of faster forgetting by PDAPP mice (a well-established model of Alzheimer's disease as reported by Games and colleagues in an earlier paper). Experiment 1, using mice aged 13-16 mo, confirmed the presence of a deficit in a spatial reference memory task in the water maze by hemizygous PDAPP mice(More)
BACKGROUND Spinal Muscular Atrophy (SMA) is a neurodegenerative motor neuron disorder resulting from a homozygous mutation of the survival of motor neuron 1 (SMN1) gene. The gene product, SMN protein, functions in RNA biosynthesis in all tissues. In humans, a nearly identical gene, SMN2, rescues an otherwise lethal phenotype by producing a small amount of(More)
A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a(More)
The behavioral and biochemical impact of active immunization against human beta-amyloid (Abeta) was assessed using male transgenic (Tg) mice overexpressing a human mutant amyloid precursor protein (heterozygous PDAPP mice) and littermate controls. Administration of aggregated Abeta42 occurred at monthly intervals from 7 months ("prevention") or 11 months(More)
OBJECTIVES Survival Motor Neuron (SMN) protein levels may become key pharmacodynamic (PD) markers in spinal muscular atrophy (SMA) clinical trials. SMN protein in peripheral blood mononuclear cells (PBMCs) can be quantified for trials using an enzyme-linked immunosorbent assay (ELISA). We developed protocols to collect, process, store and analyze these(More)
In amyloid precursor protein (APP) models of amyloid deposition, the amount of amyloid deposits increase with mouse age. At a first approximation, the extent of amyloid accumulation may either reflect small excesses of production over clearance that accumulate over time or, alternatively, indicate a steady-state equilibrium at that age, reflecting the(More)