Learn More
Oxidative stress and inflammation is likely to be a major step in the development of sepsis-associated encephalopathy (SAE) and long-term cognitive impairment. To date, it is not known whether brain inflammation and oxidative damage are a direct consequence of systemic inflammation or whether these events are driven by brain resident cells, such as(More)
Sepsis-associated encephalopathy (SAE) is associated with an increased rate of morbidity and mortality. It is not understood what the exact mechanism is for the brain dysfunction that occurs in septic patients, but brain inflammation and oxidative stress are a possible theory. Such events can occur through the alteration of molecules that perpetuate the(More)
Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder resulting from deficiency of branched-chain α-keto acid dehydrogenase complex leading to branched chain amino acids (BCAA) leucine, isoleucine, and valine accumulation as well as their corresponding transaminated branched-chain α-keto acids. MSUD patients present neurological(More)
Sepsis is defined as the host's reaction to infection and characterised by a systemic inflammatory response with important clinical implications. Central nervous system dysfunction secondary to sepsis is associated with local generation of pro- and anti-inflammatory cytokines, impaired cerebral microcirculation, an imbalance of neurotransmitters, apoptosis(More)
Central nervous system (CNS) dysfunction secondary to sepsis is characterized by long-term cognitive impairment. It was observed that oxidative damage, energetic metabolism impairment, and cytokine level alteration seen in early times in an animal model of sepsis may persist for up to 10 days and might be associated with cognitive damage. In order to(More)
Maple syrup urine disease (MSUD) is an inborn metabolism error caused by a deficiency of branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to an accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, as well as their corresponding α-keto and α-hydroxy acids. Previous reports suggest that MSUD(More)
Streptococcus pneumoniae is a common cause of forms of bacterial meningitis that have a high mortality rate and cause long-term neurologic sequelae. We evaluated the effects of an indoleamine 2,3-dioxygenase (IDO) inhibitor on proinflammatory mediators and memory in Wistar rats subjected to pneumococcal meningitis. The animals were divided into 4 groups:(More)
Epigenetic mechanisms are involved in normal behavior and are implicated in several brain neurodegenerative conditions, psychiatric and inflammatory diseases as well. Moreover, it has been demonstrated that sepsis lead to an imbalance in acetylation of histones and that histone deacetylase inhibitors (HDACi) can reverse this condition. In the present study,(More)
Sepsis is defined as the host's reaction to infection and it is characterized by a systemic inflammatory response with important clinical implications. Central nervous system dysfunction secondary to sepsis is associated with local generation of pro- and anti-inflammatory cytokines, impaired cerebral microcirculation, disturbance of neurotransmitters,(More)
Pneumococcal meningitis is characterized by a severe inflammatory reaction in the subarachnoid and ventricular space of the brain, disruption of the blood-brain barrier, hearing loss, and neurologic sequelae in as many as 27% of surviving patients. Several experimental studies have shown that erythropoietin (EPO) and its receptor are expressed in the(More)