Learn More
The Human Connectome Project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce 'functional connectivity'; 2) diffusion imaging (dMRI), which provides the input for tractography(More)
The performance of multichannel transmit coil layouts and parallel transmission (pTx) RF pulse design was evaluated with respect to transmit B1 (B1 (+)) homogeneity and specific absorption rate (SAR) at 3 T for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a(More)
Multi-band echo planar imaging (MB-EPI), a new approach to increase data acquisition efficiency and/or temporal resolution, has the potential to overcome critical limitations of standard acquisition strategies for obtaining high-resolution whole brain perfusion imaging using arterial spin labeling (ASL). However, the use of MB also introduces confounding(More)
A new method is presented for rapid and accurate large volumetric radiofrequency (RF) field (B(1) (+)) mapping. This method is a modification of the double-angle method (DAM), which accelerates imaging speed and applies 3D acquisition to improve B(1) (+) measurement accuracy. It reduces repetition time and scan time by introducing a catalyzation RF pulse(More)
  • 1