Ding Yu Heh

Learn More
—This paper presents the application of unconditionally stable fundamental finite-difference time-domain (FADI-FDTD) method in modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma (BCC). The healthy skin and BCC are modeled as Debye dispersive media and the model is incorporated into the FADI-FDTD method. Numerical(More)
This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency.(More)
(2014). Fundamental locally one-dimensional method for 3-D thermal simulation. IEICE transactions on electronics, E97.C(7), 636-644. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for(More)
  • 1